

Microsoft
MCSD: Windows Store Style
Apps Using C# Certification

70-483: Programming in C#
Courseware
Version 1.0

www.firebrandtraining.com

www.firebrandtraining.com

1

1 1.

Module 1

Review of Visual C# Syntax

2 1.

Course and Exam Contents

42 questions

130 minutes
Manage program

flow
25%

Create and use
types
24%

Debug
applications and

implement
security

25%

Implement data
access

26%

MSDN study links for exam 70-483: Programming in C#
http://www.jayway.com/2012/08/15/msdn-study-links-for-exam-70-483-programming-in-c/

2

3 1.
Review of Visual C# Syntax

Contents

Topic Slide

Labs and Demos 4

Namespaces 5

Assemblies 6

Types 9

Value Types 13

Selection Statements 16

Reference Types 20

Strings 21

Regular Expressions 24

Encoding Text 30

Casting/Converting 32

Internationalization 36

Miscellaneous 39

Exam Topic: Implement program flow

 Program decisions by using switch statements (1-20),

if/then (1-20), and operators (1-9)

 Iterate across collection and array items (1-21)

 Evaluate expressions (1-11)

Exam Topic: Manipulate strings

Manipulate strings by using the

StringBuilder, StringWriter, and

StringReader classes (1-17)

 Search strings (1-17)

 Enumerate string methods (21)

 Format strings (35)

Exam Topic:

Consume types

 Box or unbox to

convert between

value types (4-6)

 Cast types (32)

 Convert types (1-

14)

Exam Topic: Validate application input

 Data collection types (1-8)

Manage data integrity (1-17)

 Evaluate a regular expression to validate

the input format (24)

Use built-in functions to validate data

type and content (1-16)

4 1.
Labs and Demos

Console Applications

Text-based command line user interface

•Many of the lab exercises use console applications

If you start a Console app with debugging (F5), then Visual

Studio closes the command prompt window automatically

when it terminates, so instead:

•Use Ctrl+F5 instead (leaves command prompt window open)

•Add a Console.ReadLine() as last line

• Set breakpoint on last line

To pass command line arguments from Visual Studio

•Project properties, Debug tab, Start Options section

3

5 1.
Namespaces

What Are They?

A namespace is a logical container of type

To import a namespace

•Without importing the namespace, declarations can get long

• Importing a namespace is optional, but it simplifies declarations

To define a namespace

using System.Collections;
...
Hashtable ht;

System.Collections.Hashtable ht;

namespace MyCompany.Controls
{
 ...
}

6 1.
Assemblies

What Are They?

An assembly is a container for everything the CLR needs to

load and execute your code

Assembly metadata and manifest

•Name, assembly and file version, strong name, referenced

assemblies, version of CLR to use, and so on

Type metadata

• Information about the types, their members, and so on

Code

• Intermediate Language (IL) code for methods

Embedded Resources (optional)

• Images, strings, JavaScript, and so on

4

7 1.
Assemblies

Command Line Tools

csc.exe and vbc.exe

• Language compilers; create .exe, .dll, and .netmodule files

resgen.exe

•Resource compiler turns .resx (XML) into .resources (binary)

al.exe

•Assembly linker combines metadata, .netmodules, resources

sn.exe

•Generate a strong name key pair (required for GAC deployment)

gacutil.exe

• Install or uninstall assembly in Global Assembly Cache (GAC)

8 1.
Assemblies

How Are They Related to Namespaces?

To reference an assembly (actual container of type)

•Required to use a type in that assembly

•To use command line compiler instead of Visual Studio

To use Object Browser to explore relationship between

assemblies and namespaces

• For example, XmlDataDocument is in the System.Data assembly, but

logically in the System.Xml namespace

•To use XmlDataDocument, you must reference the System.Data

assembly, and can import the System.Xml namespace

Object Browser can show types grouped by container (i.e.

assembly) or by namespace

csc /r:AnAssembly.dll mycode.cs

5

9 1.
Types

What Are They?

When a variable is declared you

specify the type

• Local to where they are declared

e.g. inside an if or try block

Category Type Meaning

 class Button Defines a reference type stored on the heap

 struct Int32 Defines a value type stored on the stack

 enum XmlNodeType Lookup of string constants stored as integers

 interface IDisposable Contract that a type can implement

 delegate EventHandler Type-safe function pointer

Button b;
Int32 i;
XmlNodeType x;
IDisposable r;
EventHandler e;

Types (C# Programming Guide)
http://msdn.microsoft.com/library/ms173104.aspx

10 1.
Types

Members

Member Example Meaning

 Field String.

Empty

Used for data storage; can be passed by ref, unlike a

property; can be read-only

 Constant Int32.

MaxValue

Field that can never change value;

or use a read-only field

 Event Button.

Click

Field of type delegate; creates get/set methods to

implement event handler functionality

 Method ToString An action; can be called with delegate

Constructor Method executed when an instance is created

 Property Button.

Width

Syntactic sugar for pair of methods to get and/or set

a value; often has field as the backing store

 Indexer this[int] Syntactic sugar; s[2] to access char in string

 Operator + Syntactic sugar; + calls String.Concat

6

11 1.
Types

Type and Member Access and Other Modifiers

Keyword Visible outside type?

 private No; default for nested classes and structs

 protected Only to derived types

 internal Only to types in same assembly; default

 protected internal Only to derived types OR types in same assembly

 public Yes, everywhere; default for nested enums

Keyword Meaning

 static One copy of field or method is shared by all type instances;

access members via type

readonly Field that can only be set in a constructor

12 1.
Types

How to Use the MSDN Library

.NET Framework Class Library

•Brief description

•Namespace, Assembly

• Syntax (inheritance, interfaces)

•Remarks (good for exam study)

• Examples

• Inheritance Hierarchy

• See Also, Members

System.Int32
http://msdn.microsoft.com/en-us/library/system.int32.aspx

7

13 1.
Value Types

Declaring Value Types

Some built-in value types

•Int16, Int32, Int64, UInt32, Single, Double, Decimal

•Char, Boolean, DateTime

•Assignment copies the value stored on the stack

•U prefix indicates unsigned, exception is Byte/SByte

int a1, short b1;
Int32 a2, Int16 b2;

Console.WriteLine("UInt16 range is {0} to {1}",
 UInt16.MinValue, ushort.MaxValue); // 0 to 65,535
Console.WriteLine("Byte range is {0} to {1}",
 Byte.MinValue, byte.MaxValue); // 0 to 255
Console.WriteLine("SByte range is {0} to {1}",
 SByte.MinValue, sbyte.MaxValue); // -127 to 128

Classes and Structs (C# Programming Guide)
http://msdn.microsoft.com/library/vstudio/ms173109.aspx

14 1.
Value Types

Nullable Type

Can wrap any value type to allow it to have a null value

Nullable<int> a = null;
int? b; // alternative syntax
int c = a.GetValueOrDefault(10);
if (b.HasValue) ...

8

15 1.
Value Types

BigInteger

System.Numerics.BigInteger is an arbitrary-precision integer

data type

•Highly performant big integer implementation

• Supports all the standard integer operations, including bit

manipulation

• It can be used from any .NET language, and some of the new .NET

languages—such as F# and IronPython—have support built-in to the

language

16 1.
Selection Statements

if

// block style
if (Condition1)
{
 // Condition1 is true.
}
else if (Condition2)
{
 // Condition1 is false and Condition2 is true.
}
else if (Condition3)
{
 if (Condition4)
 {
 // Condition1 and Condition2 are false. Condition3 and Condition4 are true.
 }
 else
 {
 // Condition1, Condition2, and Condition4 are false. Condition3 is true.
 }
}
else
{
 // Condition1, Condition2, and Condition3 are false.
}

// single-line style
if (Condition1)
 // Condition1 is true.
else
 // Condition1 is false.

Selection Statements (C# Reference)
http://msdn.microsoft.com/library/vstudio/676s4xab.aspx

9

17 1.
Selection Statements

switch

int switchExpression = 3;
switch (switchExpression)
{
 // A switch section can have more than one case label.
 case 0:
 case 1:
 Console.WriteLine("Case 0 or 1");
 // Most switch sections contain a jump statement, such as
 // a break, goto, or return. The end of the statement list
 // must be unreachable.
 break;
 case 2:
 Console.WriteLine("Case 2");
 break;
 // The following line causes a warning.
 Console.WriteLine("Unreachable code");
 // 7 - 4 in the following line evaluates to 3.
 case 7 - 4:
 Console.WriteLine("Case 3");
 break;
 // If the value of switchExpression is not 0, 1, 2, or 3, the
 // default case is executed.
 default:
 Console.WriteLine("Default case (optional)");
 // You cannot "fall through" any switch section, including
 // the last one.
 break;
}

switch (switchExp)
{
 case 1:
 cost += 25;
 break;
 case 2:
 cost += 25;
 goto case 1;
 case 3:
 cost += 50;
 goto case 1;
 default:
 // error
 break;
}

18 1.
Selection Statements

Short-Circuiting Boolean Operations

Func2 may not be called due to short-circuiting

Both functions will always be called

if(Func1() || Func2()) { // “or” with short-circuiting

if(Func1() | Func2()) {

if(Func1() & Func2()) {

if(Func1() && Func2()) { // “and” with short-circuiting

10

19 1.
Selection Statements

Null-Coalescing and Conditional Operations

Null-coalescing operator (??)

• If x is null then return -1 else return x

Conditional operator (?: ternary operator)

• condition ? expression_if_true : expression_if_false

• ?: is right-associative, meaning these statements are equivalent

int y = x ?? -1;

s = x != 0.0 ? Math.Sin(x)/x : 1.0;

a ? b : c ? d : e

a ? b : (c ? d : e)

20 1.
Reference Types

What Are They?

A reference type is a pointer to an object on the heap

Assignment copies the memory address on the stack

• System.String overrides this behaviour to act like a value type even

though it is actually a reference type

•Your types should NOT DO THIS

•Your types should implement the ICloneable interface (and therefore

provide a Clone method) instead

Requires garbage collection to remove

•GC does this automatically when needed

•Your types can implement IDisposable to release memory earlier

• See Module 11 for more details

11

21 1.
Strings

System.String

Immutable array of char

•New array created each time string changes so it is inefficient with

many changes e.g. loop doing concatenation

Static members (also many instance members not shown

here)

• Empty: use instead of ""

• IsNullOrEmpty(): returns true if null or ""

•Concat(): called by operator +

• Format(): use format patterns e.g. "{0:c}"

• Join(): join items in string array with a separator char

•Compare(), CompareOrdinal(): ordinal comparisons are better

• IsInterned(): duplicate strings are pooled to save space

string s1; String s2; System.String s3;

22 1.
Strings

System.Text.StringBuilder

Mutable array of char

•Much more efficient when manipulating strings

Instance members

•Append(), AppendLine(): add string to builder

•AppendFormat(): add with formatting pattern

•Capacity, EnsureCapacity(): pre-size array for more efficiency

•MaxCapacity: Int32.MaxValue

• Insert(): insert string into position in builder

• Length: current size

•Remove(), Replace()

•ToString(): once you have finished building

12

23 1.
Strings

System.Security.SecureString

Problems with System.String

• Strings are both immutable and cannot be programmatically

scheduled for garbage collection, so if a String contains sensitive

information such as a password, credit card number, or personal

data, there is a risk the information could be revealed after it is used

Use SecureString when text should be kept confidential

•Text is encrypted for privacy when being used, and deleted from

computer memory when no longer needed

•MakeReadOnly method

•Not visible to COM

http://msdn.microsoft.com/en-us/library/system.security.securestring.aspx

24 1.
Regular Expressions

What Are They?

Regular expressions can validate and process text

When validating input, include the leading caret and trailing

dollar to avoid security vulnerabilities

• ^ means start of input; $ means end of input

•Therefore ^\d{4}$ means only four digits

• \d{4} means four digits, but would also match DROP table;1234

bool b = Regex.IsMatch("test 1234", @"\d{4}");

Validating Data
http://msdn.microsoft.com/library/vstudio/t3b36awf.aspx

Regular Expression Library
http://www.regexlib.com/

The Premier website about Regular Expressions
http://www.regular-expressions.info/

13

25 1.
Regular Expressions

Common Special Characters

^ Start of line/string $ End of line/string

\t Tab \n New line

\b Boundary of word \B Non-boundary

* Zero or more times + One or more times

? Zero or one time x|y Either x or y

[xyz] Any of the enclosed characters [a-z] A range of characters

\d \D Digit Non-digit \w \W Word character

non-word character

\s \S White space / non-white space \G Match at point previous

match ended

\040 ASCII as octal \u0020 Unicode as hex

.NET Framework Regular Expressions
http://msdn.microsoft.com/library/hs600312.aspx

26 1.
Regular Expressions

How to Match Using Backreferences

Find repeating groups of characters

Define backreference using a named group and \k

•Named group: (?<name>chars)

Example

• (?<char>\w)\k<char>

• finds adjacent paired characters

14

27 1.
Regular Expressions

Options

RegExOption

• IgnoreCase: case-insensitive matching

•Multiline: changes meaning of ^ and $ to start and end of line, not

whole string

• Singleline: changes meaning of . to match every character (instead of

every character except \n)

•Compiled: creates an assembly; slower start-up but faster execution

because the regular expression is evaluated only once

•CultureInvariant and RightToLeft: globalization options

b = Regex.IsMatch("Tip", "t{1}",
 RegexOptions.IgnoreCase | RegexOptions.Compiled);

28 1.
Regular Expressions

How to Extract Matched Data

Regex static methods: Match, Matches, Replace

Match instance members: Groups, NextMatch

string s = Regex.Replace("test 1234", @"\d{4}", "");

MatchCollection mc = Regex.Matches("124 568", @"\d{3}");
foreach (Match m in mc)
{
 Console.WriteLine(m.Value);
}

15

29 1.
Regular Expressions

How to Replace Substrings

Change mm/dd/yy to dd-mm-yy

string MDYtoDMY(string s) {
 return Regex.Replace(s, @"\b(?<month>\d{1,2})" +
 "/(?<day>\d{1,2})/(?<year>\d{2,4})\b",
 "${day}-${month}-${year}");
}

30 1.
Encoding Text

Encoding and Decoding

ASCII encoding (ASCIIEncoding)

• 7 bit bytes (0-127); inadequate for international code

ANSI/ISO encodings (Encoding.GetEncoding method)

• Supports code pages with language specific values (128-256)

Unicode supports most languages

•UTF32Encoding (32-bit integers)

•UnicodeEncoding (16-bit integers, used internally by .NET)

•UTF8Encoding (8-bit, 16-bit, 24-bit, 32-bit, 48-bit)

•UTF7Encoding (7-bit ASCII, less secure and robust than UTF-8)

Encodings are often specified in e-mails and web pages

<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />

16

31 1.
Encoding Text

Using the Encoding Class

Encoding classes convert between .NET strings (UTF-16) and

the specified encoding using two methods

• GetBytes(string) returns a byte array

• GetString(byte[]) returns a string

• Hint: ToString("x2") converts a byte into hex representation

GetEncodings returns an array of EncodingInfo

byte[] data = Encoding.UTF8.GetBytes("£23");
string s = Encoding.UTF8.GetString(data);

EncodingInfo[] eis = Encoding.GetEncodings();
foreach (EncodingInfo ei in eis)
 Console.WriteLine("{0}: {1}, {2}", ei.CodePage,
 ei.Name, ei.GetEncoding().BodyName);

32 1.
Casting/Converting

Converting Between Types

Widening can be implicit; narrowing must be explicit

If the object does not derive from the type
•C# as keyword returns null

Use is to check if one type derives from another

int a = 9;
long b = a;
int a = (int)b; // works with value types

Employee e = new Employee();
Person p = e;
e = (Employee)p; // could throw an exception
e = p as Employee; // reference types only
 // and could return null

if (p is Person) { // safe to cast

17

33 1.
Casting/Converting

String Representations

All types have the ToString method

•You should override ToString in your own types to provide a string

representation for an instance of your type

•Used by debugger watch windows, when adding to List-type controls,

in Write-type methods, and so on

Many types have static Parse and TryParse methods

•Parse method could throw an exception; TryParse returns bool

•Allows conversion from string representation to a type instance

int i;
if (int.TryParse("23", out i) { // can now use i

s = "2008-03-01 10:00"; // no time zone information (see next slide)
culture = CultureInfo.CreateSpecificCulture("fr-FR");
styles = DateTimeStyles.AdjustToUniversal | DateTimeStyles.AssumeLocal;
if (DateTime.TryParse(s, culture, styles, out dateResult))

34 1.
Casting/Converting

Globalization Options

DateTime.TryParse Method (String, IFormatProvider, DateTimeStyles, DateTime)
http://msdn.microsoft.com/en-us/library/9h21f14e.aspx

DateStyles Description

AdjustToUniversal Parses s and, if necessary, converts it to UTC. If s includes a time

zone offset, or if s contains no time zone information but styles

includes the DateTimeStyles.AssumeLocal flag, the method parses

the string, calls ToUniversalTime to convert the returned DateTime

value to UTC, and sets the Kind property to DateTimeKind.Utc

AssumeLocal Specifies that if s lacks any time zone information, it is assumed to

represent a local time. Unless the

DateTimeStyles.AdjustToUniversal flag is present, the Kind

property of the returned DateTime value is set to

DateTimeKind.Local

AssumeUniversal Specifies that if s lacks any time zone information, it is assumed to

represent UTC

18

35 1.
Casting/Converting

Formatting Output

String.Format method

•Also implemented internally by Console.WriteLine and others

int i = 1234; string s = "Fred";
s = String.Format("{1} is {0:N0} miles away.", i, s);

Fred is 1,234 miles away.

Standard Date and Time Format Strings
http://msdn.microsoft.com/en-us/library/az4se3k1.aspx

Standard Numeric Format Strings
http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx

Composite Formatting
http://msdn.microsoft.com/en-us/library/txafckwd.aspx

String.Format Method (String, Object)
http://msdn.microsoft.com/en-us/library/fht0f5be.aspx

36 1.
Internationalization

Formatting Data for Globalization

CultureInfo defines

•How strings, numbers, and dates are compared

•How numbers and dates are formatted

•Which resources are retrieved during localization

Culture can be

• Invariant: culture is not relevant

•Neutral: culture is associated with a language but not a region; en

(English), fr (French), es (Spanish)

• Specific: culture is associated with a language and a region;

en-US (US English), en-GB (British), fr-CA (Canadian French)

CultureInfo ci = new CultureInfo("fr-BE");

19

37 1.
Internationalization

Handling Dates Outside .NET

Use ISO 8601 format code which is culture independent

Or use ToBinary (instance) and FromBinary (static)

• 64-bit value encodes Kind and Ticks

• Includes local time zone and automatically adjusts

DateTime dt = new DateTime(2008, 4, 10, 6, 30, 0);
Console.WriteLine(dt.ToString("o"));

// executes on a machine in London
DateTime dtLocalLondon = DateTime.Now;
long b = dtLocalLondon.ToBinary();

// running on a machine in Paris
DateTime dtLocalParis = DateTime.FromBinary(b);

2008-04-10T06:30:00.0000000

38 1.
Internationalization

Threads and Culture

Threads have two culture properties

•CurrentCulture: globalizes code

Automatically set from regional setting in OS (en-GB)

Should always be a specific culture

•CurrentUICulture: localizes user interface

Automatically set from version of OS (en-US)

Can be a neutral culture

•Can be replaced with a new CultureInfo instance

Specific culture's Parent is neutral, then Invariant

.NET Internationalization: The Developer's

Guide to Building Global Windows and

Web Applications

•Guy Smith-Ferrier

http://www.amazon.com/gp/product/images/0321341384/sr=1-1/qid=1240513624/ref=dp_image_0?ie=UTF8&n=283155&s=books&qid=1240513624&sr=1-1

20

39 1.
Miscellaneous

Obsolete Types and Members

Some types and members are now considered to be obsolete

(deprecated)

•Check the MSDN documentation

•The compilers will also warn you

Examples

•XmlValidatingReader class

• EventLog.CreateEventSource method

Apply ObsoleteAttribute to your own types and members

40 1.
Miscellaneous

Further Study

BCL Team Blog

•Great for inside information about how

and why the BCL works

•http://blogs.msdn.com/b/bclteam/

CLR via C#, 4th Edition

• Jeffery Richter

•Dig deep and master the intricacies of

the common

language runtime (CLR) and the .NET

Framework

1

1 2.

Module 2

Creating Methods, Handling Exceptions, and Monitoring

Applications

2 2.
Creating Methods, Handling Exceptions, and Monitoring Applications

Contents

Topic Slide

Methods 3

Extension Methods 5

Exceptions 6

Diagnostics 7

Managing Code 16

Exam Topic: Implement exception handling

Handle exception types (SQL exceptions, network

exceptions, communication exceptions, network

timeout exceptions) (2-12)

 Catch typed vs. base exceptions (2-13)

 Implement try-catch-finally blocks (2-14)

 Throw exceptions (2-16)

 Determine when to rethrow vs. throw (2-16)

 Create custom exceptions (5-12)

Exam Topic: Debug an application

 Create and manage compiler directives (14)

 Choose an appropriate build type (2-18)

Manage programming database files and symbols

Exam Topic: Implement diagnostics in an application

 Implement logging and tracing (2-17)

 Profiling applications (2-19)

 Create and monitor performance counters (2-20)

Write to the event log (2-18)

Exam Topic: Create types

 Create methods, extension

methods, optional and named

parameters, and indexed

properties (2-3)

 Create overloaded and

overridden methods (2-8)

2

3 2.
Methods

Overloading Methods and Constructors

Can have multiple implementations as long as the input

parameters are different data types

double Calc() {
 return ...
}
double Calc(string s) {
 return ...
}
int Calc(string s) { // compile error
 return ...
}

4 2.
Methods

Optional and Named Parameters

Optional parameters

Named arguments must be last

Named arguments can be in any order

•Non-optional arguments must be specified

public StreamReader OpenTextFile(
 string path, Encoding encoding = null,
 bool detectEncoding = true, int bufferSize = 1024);

OpenTextFile("foo.txt", Encoding.UTF8,
 bufferSize: 4096);

OpenTextFile(
 bufferSize: 4096,
 path: "foo.txt",
 detectEncoding: false);

3

5 2.
Extension Methods

How to Create Extension Methods

Extension methods allow you to add methods to a type

without inheritance or recompilation

•Create a static class with a static method that uses the this keyword

before a parameter to specify the type to extend

• Import the namespace containing the class

namespace MyExtensions {
 public static class StringExtensions {
 public static bool IsValidEmailAddress(this string s) {

using MyExtensions;

6 2.
Exceptions

How to Throw, Catch, and Clean Up

Thrown when an exceptional action occurs

System.Exception is base class for all exceptions

• Includes StackTrace with line numbers

•Deriving from ApplicationException no longer recommended

Try…Catch

•Multiple catch blocks are allowed from most general to most specific

type of exception

Try…Catch…Finally

• Finally block executes before control passed up call stack

•Often used to release unmanaged resources

catch ... {
 // rethrow with original stack trace
 throw;

throw new ArgumentException("message");

4

7 2.
Diagnostics

Logging to Event Viewer

Event Viewer is used by admins to view event logs

• System: non-security OS events

• Security: auditing events; applications cannot write to this log

•Application: for applications that do not create their own log; can be

filtered by Event Source (typically the application that wrote the

event entry)

•Custom logs

Only first eight characters are significant in log names!

8 2.
Diagnostics

Debugger...Attributes

Use to customize how a type instance appears in watch

DebuggerBrowsable Should this field display in watch windows?

Values: Never, Collapsed, RootHidden

DebuggerDisplay How should this type display in watch windows?

Use custom string to format field values

DebuggerHidden Prevent breakpoints being set inside the method this is

applied to

DebuggerStepThrough Apply to method to step over the code when debugging

(but it still executes the method)

DebuggerTypeProxy Override how a given type is shown and then specify

how you want it shown

DebuggerVisualizer Specifies which debug visualizer to use for this code

[DebuggerDisplay("First Name: {FirstName}")]
public class Person

5

9 2.
Diagnostics

Logging Debugging and Trace Information

Debug and Trace objects can be used to capture information

•Only available when DEBUG and TRACE compiler constants are

defined

In the default Solution Configurations

•Both DEBUG and TRACE are set for Debug configuration

•Only TRACE is set for Release configuration

10 2.
Diagnostics

Debug and Trace methods and properties

Assert Evaluates a condition, breaks and displays a message box if the

condition evaluates to false; unless .config has:

<assert assertuienabled="false" logfilename="..."/>

Fail Outputs a failure message box including stack trace

Write, WriteIf Write to the listeners without a line break

WriteLine,

WriteLineIf

Write to the listeners with a line break

Print Same as WriteLine; for compatibility with VB6

Indent,

Unindent

Indents the output; IndentLevel shows current level,

IndentSize controls amount of indentation

Flush Calls Flush on attached listeners; or set AutoFlush

Close Calls Close on attached listeners

Listeners Collection of listener objects; default is Output window which

does not need to be Flushed or Closed

6

11 2.
Diagnostics

Using Listeners

Debug and Trace share the same Listeners collection so

adding a listener to one makes it available to both

Listeners inherit from TraceListener and determine where

the output from is written to

•DefaultTraceListener: Output window of VS; named "Default"

•ConsoleTraceListener: a Console window

•TextWriterTraceListener: a text file

•DelimitedListTraceListener: a delimited text file

•XmlWriterTraceListener: an XML file

• EventSchemaListener: an XML file that conforms to a schema

• EventLogTraceListener: an event log

•WebPageTraceListener: integrate with ASP.NET Trace

12 2.
Diagnostics

Configuring Tracing Using a .config File

Adds a text file listener and removes the default

Writing to the Application event log

<system.diagnostics>
 <trace autoflush="true">
 <listeners>
 <add name="configText"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="output.txt" />
 <remove name="Default" />
 </listeners>
 </trace>
</system.diagnostics>

<add name="configEventLog"
 type="System.Diagnostics.EventLogTraceListener"
 initializeData="Application" />

7

13 2.
Diagnostics

Shared Listeners

Can set up shared listeners for use by Trace and one or

more TraceSources

<trace> <!-- Trace -->
 <listeners>
 <add name="sharedLogger" />
 </listeners>
</trace>
<sources>
 <source name="ts"> <!-- new TraceSource("ts") -->
 <listeners>
 <add name="sharedLogger" />
 </listeners>
 </source>
</sources>
<sharedListeners>
 <add name="sharedLogger"
 type="System.Diagnostics.ConsoleTraceListener" />
</sharedListeners>

14 2.
Diagnostics

Conditional Directive

When the C# compiler encounters an #if directive, followed

eventually by an #endif directive, it will compile the code

between the directives only if the specified symbol is

defined

Either select the Debug check box in Project properties or

add following line of code or use /debug option

#if (C# Reference)
http://msdn.microsoft.com/en-us/library/4y6tbswk.aspx

#define DEBUG

#if DEBUG
 Console.WriteLine("Debug version");
#endif

8

15 2.
Diagnostics

Conditional Attribute

Indicates to compilers that a method call or attribute should

be ignored unless a specified conditional compilation symbol

is defined

ConditionalAttribute Class
http://msdn.microsoft.com/en-us/library/system.diagnostics.conditionalattribute.aspx

[Conditional("CONDITION1")]
public static void Method1(int x)
{
 Console.WriteLine("CONDITION1 is defined");
}

16 2.
Managing Code

Defining Regions

#region lets you specify a block of code that you can expand

or collapse when using the outlining feature of the Visual

Studio Code Editor

• In longer code files, it is convenient to be able to collapse or hide one

or more regions so that you can focus on the part of the file that you

are currently working on

#region (C# Reference)
http://msdn.microsoft.com/en-us/library/9a1ybwek(v=vs.110).aspx

#region MyClass definition
public class MyClass
{
 static void Main()
 {
 }
}
#endregion

1

1 3.

Module 3

Developing the Code for a Graphical Application

2 3.
Developing the Code for a Graphical Application

Contents

Topic Slide

Value Types (struct) 3

Enumerations (enum) 4

Collections 7

Delegates and Events 19

Language Features 22

Lambda Expressions 25

LINQ 29

Extension Methods 35

Projection 47

Joining and Grouping 53

Exam Topic: Create and implement events and

callbacks

 Create event handlers (3-17)

 Subscribe to and unsubscribe from events (3-19)

Use built-in delegate types to create events (21)

 Create delegates (19)

 Lambda expressions (25)

 Anonymous methods (20)

Exam Topic: Query and manipulate data and objects by

using LINQ

Query data by using operators (projection, join, group, take,

skip, aggregate) (35, 47, 53)

 Create method-based LINQ queries (35)

Query data by using query comprehension syntax (3-15)

 Select data by using anonymous types (49)

 Force execution of a query (39, 46)

Exam Topic: Store data in and retrieve data from collections

 Store and retrieve data by using dictionaries, arrays, lists, sets, and

queues (3-10)

 Initialize a collection (3-13)

 Add and remove items from a collection (3-13)

2

3 3.
Value Types (struct)

How to Create User-Defined Value Types

Structures define value types

• Can have: constructors, fields, methods, operators

Benefits

• If < 16 bytes of field data, more efficient than classes

• Point has X and Y (Int32), therefore 8 bytes of field data

Limitations

• Cannot inherit from structures

struct Cycle {
 // ...
}

4 3.
Enumerations (enum)

What Are They?

List of constants derived from integer types

• If not specified, default is System.Int32 (int, Integer)

Useful for simple lookups

enum Fruit : byte {
 Apple = 1,
 Banana,
 Cherry
}

Fruit f = Fruit.Cherry;
f = (Fruit)2;
f = Enum.Parse(typeof(Fruit),
 "apple", true) as Fruit;

3

5 3.
Enumerations (enum)

Bitwise Operations

What are the values of a, b, c, d?

Bitwise operations apply to the bits

So the values are...

a = 2 & 8;
b = 2 | 8;
c = 8 & 9;
d = 8 | 9;

2 is 0010
8 is 1000
9 is 1001

a = 0 = 0000
b = 10 = 1010
c = 8 = 1000
d = 9 = 1001

6 3.
Enumerations (enum)

Bitwise Operations and FlagsAttribute

Apply [Flags] to enumeration to allow recognition that the

values could be combined in bitwise operations

You must manually set values to 1, 2, 4, 8, and so on

Strings will now output correctly

Without Flags it would print as 3

Fruit f = (Fruit)3;
Console.WriteLine(f);

Apple, Banana

[Flags] enum Fruit {
 None = 0, Apple = 1, Banana = 2,
 Cherry = 4, Date = 8, Elderberry = 16
}

4

7 3.
Collections

What Are They?

Resizable data structures that store multiple objects

List collections implement IList and are indexed

• ArrayList: object

• StringCollection: string

• List<T>: strongly-typed

Sequential collections have custom add/remove methods

• Queue:

object

• Queue<T>:

strongly-typed

0

1

2

• Stack:

object

• Stack<T>:

strongly-typed

8 3.
Collections

ArrayList and List<T>

ArrayList al = new ArrayList(); // contains System.Object
al.Capacity = 5; // pre-size the collection
al.Add(123);
string[] words = { "more", "or", "less" };
al.AddRange(words); // insert items as separate objects
al.Insert(3, "Hey Dude!"); // insert into a position in list
al[3] = "Hey Buddy!"; // change the value

List<int> il = new List<int>();
il.Capacity = 5; // pre-size the collection
il.Add(123);
int[] numbers = { 27, 36, 95 };
il.AddRange(numbers); // insert items as separate objects
il.Insert(3, 56); // insert into a position in list
il[3] = 57; // change the value

5

9 3.
Collections

Iterating Items

Compiler converts For Each statements into calls to these

interfaces

• IEnumerable, IEnumerable<T>: GetEnumerator()

• IEnumerator, IEnumerator<T>: Reset(), MoveNext(), Current

foreach (object o in c) {
 Console.WriteLine(o);
}

IEnumerator i =
 c.GetEnumerator();
while (i.MoveNext())
 Console.WriteLine(i.Current);

10 3.
Collections

Common Interfaces for List Collections

ICollection and ICollection<T>

• Count, CopyTo

• IsSynchronized: is type thread-safe?

• SyncRoot: returns object to be used for thread synchronization

IList and IList(T) are for indexed collections

• IsFixedSize, IsReadOnly

• Add(object), Insert(object, index)

• Contains(object), IndexOf(object)

• Remove(object), RemoveAt(index), Clear()

• Sort(), Sort(IComparer), Sort(Comparison<T>),

Sort(index, count, IComparer)

6

11 3.
Collections

Sorting Collections with IComparable

To be able to sort collections the type in the collection can

implement IComparable or IComparable<T>

• CompareTo returns -1 if less than, 0 if equal, 1 if greater than

Array.Sort, List<T>.Sort

If you have not implemented IComparable it throws

• InvalidOperationException, “Failed to compare two elements”

public class Person : IComparable<Person> {
 public string FirstName { get; set; }
 ...
 public int CompareTo(Person other) {
 return this.FirstName.CompareTo(other.FirstName);

Person[] people = ... ;
Array.Sort(people);

List<Person> morePeople = ... ;
morePeople.Sort();

12 3.
Collections

Sorting with IComparer<T> and Comparison<T>

If your type does not (or cannot) implement IComparable

then create a new class that implements IComparer or

IComparer<T>

Or use Comparison with a lambda expression

public class PersonComparer : IComparer<Person> {
 public int Compare(Person p, Person other) {
 return p.LastName.CompareTo(other.LastName);

List<Person> morePeople = ... ;
morePeople.Sort(new PersonComparer());

morePeople.Sort(new Comparison<Person>(
 (p, other) =>
 p.LastName.CompareTo(other.LastName)
));

7

13 3.
Collections

Building Collections

Easily build a “collection” by using yield keyword

• Signals to the compiler that the method is an iterator block

• Used together with the return or break keywords

public IEnumerable Power(int number, int exponent) {
 int counter = 0;
 int result = 1;
 while (counter++ < exponent) {
 result = result * number;
 // returns result, pauses until the next iteration
 yield return result;
 }
} foreach (int i in Power(2, 8)) {

 Console.Write("{0} ", i);
}

// 2 4 8 16 32 64 128 256

14 3.
Collections

Dictionaries

Collection of key/value pairs

• Key must be unique (see next slide)

• Good for fast lookups based on key

• Not usually sorted or indexed

Common interfaces

• IDictionary and IDictionary<TKey, TValue>

Choose based on size of collection

• Hashtable: >10

• ListDictionary: <10

• HybridDictionary: switches between Hashtable & ListDictionary

• Dictionary<TKey, TValue>: generic dictionary is good for all sizes

Key Value

8

15 3.
Collections

Understanding Equality

Every type derives from System.Object

• GetHashCode(): you should override this to return a unique integer;

the base implementation partially uses memory address in an attempt

to generate a unique integer

• Equals(object): return true/false

How dictionaries check for duplicate keys

• Call GetHashCode() on both keys and compare the integers

• If both have same hash then Equals() called

IEqualityComparer and IEqualityComparer<T> interfaces

• GetHashCode and Equals methods

• Implement to use a custom mechanism to check for duplicates

• Pass instance into constructor of Hashtable or Dictionary

16 3.
Collections

Adding, Modifying, and Iterating Dictionaries

Add method throws exception if key already exists

Set item either adds or modifies if key already exists

IDictionaryEnumerator

• Each item is a DictionaryEntry or KeyValuePair<TKey, TValue>

Hashtable ht = new Hashtable();
ht.Add("key1", "value1");
ht.Add("key1", "value2"); // exception thrown

ht["key2"] = "value3"; // adds
ht["key2"] = "value4"; // modifies

foreach (DictionaryEntry entry in emails) {
 // entry.Key (object), entry.Value (object)
}

9

17 3.
Collections

SortedSet<T>

SortedSet<T> collection along with an ISet<T> interface

SortedSet<T> uses a self-balancing tree which maintains

data in sorted order for performance guarantees with

insertion, deletion, and searches

Both the new SortedSet<T> and the existing HashSet<T>

implement ISet<T>

18 3.
Collections

Tuples

A tuple is a simple generic data structure that holds an

ordered set of items of heterogeneous types

We are providing common tuple types in the BCL to

facilitate language interoperability and to reduce

duplication in the framework

Tuples are supported natively in languages such as F# and

IronPython, but are also easy to use from any .NET language

such as C# and VB

10

19 3.
Delegates and Events

What Is A Delegate?

Type-safe function pointer

• Delegate must match signature of the method you want to call

// method I want to call
int M1(string s) {
 return s.Length;
}

delegate int Del(string s);

Del d = new Del(M1);
int i = d("Fred");
// d.Invoke("Fred")

20 3.
Delegates and Events

Why are Delegates Useful?

Treat methods as data

• For example, create a queue of methods to call

Anonymous delegates

• Simplify code by removing need for defining a private method

Can be invoked asynchronously using BeginInvoke

Lambda expressions (used in LINQ)

• Lambda expressions can be used in place of a delegate instance

Loose-binding of types; cleaner type design

• Foundation of events

Button1.Click += delegate { Debug.Write("Clicked"); };

11

21 3.
Delegates and Events

What Is an Event?

Events are built on delegates

EventHandler is a pre-defined delegate that conforms to

convention of method signature for event handlers

• sender (System.Object), e (System.EventArgs or derived class)

• EventHandler<T> is the generic version

To declare an event

• Use of event keyword when declaring delegate only allows += and -=

operators, not =

To raise an event:

public event EventHandler<LightEventArgs> Socket;

if(Socket != null) Socket(this, new LightEventArgs());

22 3.
Language Features

Object Initializers

C# 2.0 and earlier

C# 3.0 and later

Person person = new Person();
person.FirstName = "John";
person.LastName = "Smith";
person.Age = 32;

Person person = new Person()
 { FirstName="John", LastName="Smith", Age=32 };

12

23 3.
Language Features

Array and Collection Initializers

Initialize an array of a simple type

Initialize a collection of a complex type

• Types must implement IEnumerable and have suitable Add method

List<Person> people = new List<Person>() {
 new Person()
 { FirstName = "Scott", LastName = "Smith", Age = 32 },
 new Person()
 { FirstName = "Bill", LastName = "Gates", Age = 50 },
 new Person()
 { FirstName = "Susanne", LastName = "Smith", Age = 32 }
};

string[] names = new string[]
 { "Scott", "Bill", "Susanne" };

24 3.
Language Features

Inferred and Anonymous Types

Infers type of local variables at compile time

• Compiler must be able to infer the type so you must assign an initial

value, which can be returned from a method call

Anonymous types can be inferred from an object initializer

statement

• Instances of anonymous types are immutable in C#

var name = "Mark";

13

25 3.
Lambda Expressions

What Are They?

A lambda expression is simply a nameless function

• Can be used wherever a delegate is valid

Note: Func is a generic delegate defined by Microsoft

Func<int, int> Incr = x => x + 1;

Lambda expression Input parameter type Return value type

Input parameter name Return value expression

Generic

delegate

26 3.
Lambda Expressions

Syntax

A lambda expression syntax

Example, inferring input types from delegate

Example, explicitly defining input types

Must use parentheses with zero input parameters;

parentheses are only optional with one parameter

(input parameters) => expression

MyDelegate d = (x, y) => x == y;

MyDelegate d = (int x, string y) => x > y.Length;

MyDelegate d = () => SomeMethod();

input parameter => expression

14

27 3.
Lambda Expressions

Generic Delegates Often Used With Lambdas

Func(TResult)

• For lambda expressions with no inputs

Func(T, TResult)

• For lambda expressions with one input parameter

Func(T1, T2, TResult)

• For lambda expressions with two input parameters

Func(T1, T2, T3, TResult) and so on

Predicate(T): one input and always returns a Boolean

Func<int, bool> myFunc = x => x == 5;
bool result1 = myFunc(4); // returns false
bool result2 = myFunc(5); // returns true

28 3.
Lambda Expressions

Lambda Statements and Multi-Line Expressions

Lambda statements are nameless methods that return void

Statement lambda syntax

Statement lambdas cannot be used in expression trees and

therefore cannot be used in LINQ queries

Generic delegates for use with lambda statements

• Action(T), Action(T1, T2), and so on

Lambda expressions can also have multiple statements, but

must return a value

(input params) => { statements; }

(input parameters) => { statements; return value; }

15

29 3.
LINQ

What Is It?

Most databases understand SQL...

• ...but to C# 2.0 and VB 8.0, an SQL statement is just a string

• LINQ integrates query syntax to a .NET language

LINQ is made up of three parts

• Providers for data sources (required)

• LINQ to Objects, LINQ to SQL, LINQ to Entities, LINQ to XML, LINQ

to SharePoint, LINQ to Amazon, and so on

• Extensions to the base class libraries (required)

• System.Linq.Enumerable and System.Linq.Queryable classes in

System.Core.dll assembly

• Extensions to the languages and compilers (optional)

• C# keywords: from, select, orderby, and so on

• VB keywords: From, Select, Order By, and so on

30 3.
LINQ

Provider Limitations

Theoretically, once you learn LINQ, you can query any LINQ

provider...

• ...but some LINQ providers have limitations

For example, LINQ to SQL

• This LINQ provider must eventually convert the expression tree

created by your LINQ statements into Transact-SQL statements, so not

all LINQ statements are fully supported, or might be implemented in

ways that you do not like

LINQ to Objects supports all features, but other providers

may lack support for some features, or display unexpected

behaviour

• For example, T-SQL cannot order inner queries

• So use ToList(T) method to get data from LINQ to SQL, and

then use LINQ to Objects on the result

16

31 3.
LINQ

Enumerable and Queryable classes (System.Linq)

LINQ requires types to implement interfaces to support it’s

features: IEnumerable(T) or IQueryable(T)

• If a type does not, IEnumerable has some extension methods:

OfType(T), Cast(T) that can convert to the generic versions

LINQ uses extension methods defined by Enumerable and

Queryable classes in the System.Linq namespace

• Importing the namespace allows the extension methods to be used on

any type that implements IEnumerable(T) or IQueryable(T)

using System.Linq;

32 3.
LINQ

IEnumerable and IQueryable interfaces

IEnumerable means LINQ to Objects

• All data must be materialized locally before extension methods are

applied

IQueryable means LINQ to Entities (or LINQ to SQL)

• Data retrieval is deferred

• An expression tree is created and only when the query is enumerated

(with foreach) or one of the ToXxx methods is called will the

expression tree be converted into an SQL statement and executed to

retrieve the appropriate data

• Use ToString (with DbContext) or ToTraceString (with ObjectContext)

to see the T-SQL that will be executed

• Use a ToSomething method to retrieve data, then you can use LINQ to

Objects without limitations

17

33 3.
LINQ

To create extension methods for LINQ

Create a static class that extends IEnumerable<T>

• Returns a scalar

• Returns a sequence

namespace System.Linq {
 public static class MyLinqExtensions {
 public static double MyAggregate<T>(
 this IEnumerable<T> input) {

 public static IEnumerable<T> MyProcessor<T>(
 this IEnumerable<T> input) {

34 3.
LINQ

Language-Level Support (Syntactic Sugar)

Instead of using extension methods and lambda expressions,

C# and Visual Basic provide simplified syntax for queries

Equivalent to...

var query =
 from name in names
 where name.StartsWith("A")
 orderby name
 select name;

var query =
 names.Where(name => name.StartsWith("A"))
 .OrderBy(name => name);

// optional
.Select(name => name)

Lambda expression

18

35 3.
LINQ Extension Methods

Where

Where takes a Func<TInput,TReturn> generic delegate as

input (so we can use a lambda expression instead)

• Expression must have a single input parameter (of whatever type T in

IEnumerable(T) is) and must return a boolean

• So for the names array of strings

• For an array of Person

string[] names = ...;
... names.Where(name => name.StartsWith("A"));

Person[] people = ...;
... people.Where(p => p.Age > 18);

36 3.
LINQ Extension Methods

Where and Select Method Index Values

Where (and Select) take Func<TInput,int,TReturn> delegate

as input so you can filter based on index

string[] names = new string[] { "Fred", "George",
 "Mary", "Sally", "Emily", "Harry" };
var query = names.Where((name, index) => index % 2 == 0);
var results = query.ToArray();
listBox1.Items.AddRange(results);

19

37 3.
LINQ Extension Methods

OrderBy

OrderBy takes a Func<TInput,TKeySelector> generic

delegate as input

• Lambda expression must have a single input parameter (of whatever

type T in IEnumerable(T) is) and can return any type

• For names string array, we might want to order by the number of

characters in each string entry

• For names string array, we might want to order by the entire entry

(which looks strange but is necessary due to the syntax!)

... names.OrderBy(name => name.Length);

... names.OrderBy(name => name);

38 3.
LINQ Extension Methods

OrderBy and GroupBy

Usually you want to order first, then group

If you group first, you need to specify how to order

the group, not the original items

string[] names = new string[]
 { "Fred", "George", "Gary", "Emily" };
var query = names.OrderBy(name => name)
 .GroupBy(name => name[0]);

E
 Emily
F
 Fred
G
 Gary
 George

string[] names = new string[]
 { "Fred", "George", "Gary", "Emily" };
var query = names.GroupBy(name => name[0])
 .OrderBy(group => group.Key);

E
 Emily
F
 Fred
G
 George
 Gary

20

39 3.
LINQ Extension Methods

Chaining, Deferred Execution, and Materialization

Most extension methods return IEnumerable(T) so that they

can be chained

• The extension methods will be processed in order

• Methods that return a sequence of values do not consume the target

data until the query is enumerated (deferred execution)

• The query is not executed until enumerated over and will re-execute

over the original data each time so will detect changes

• Materialize a copy with ToArray, ToList, and so on

• Methods that return a singleton value execute and consume the target

data immediately

• Do not assume the entries in a sequence are ordered unless you

explicitly specify

... names.Where(name => name.StartsWith("A"))
 .OrderBy(name => name);

40 3.
LINQ Extension Methods

Enumerable Static Methods

Empty<T>

Range

Repeat

IEnumerable<Person> empty = Enumerable.Empty<Person>();

IEnumerable<int> squares =
 Enumerable.Range(4, 3).Select(x => x * x);

/* 16
 25
 36 */

IEnumerable<string> madness = Enumerable.Repeat(
 "All work and no play makes Jack a dull boy.", 20);

/* All work and no play makes Jack a dull boy.
 All work and no play makes Jack a dull boy.
 All work and no play makes Jack a dull boy.

21

41 3.
LINQ Extension Methods

Non-Deferred, Scalar Return Value Methods

Aggregate()

• Creates accumulations over a sequence of elements with a lambda

expression, or use one of the built-in aggregates:

• Average(), Count(), LongCount(), Max(), Min(), Sum()

All(), Any()

• Returns true if all or any elements satisfy the lambda expression

SequenceEqual()

• Returns true if the two sequences contain the same elements in the

same order

if(names.Any(name => name.StartsWith("A")))

var query = db.Products;
decimal minPrice = query.Min(p => p.ListPrice);

42 3.
LINQ Extension Methods

Non-Deferred, Single Item Return Value Methods

First, FirstOrDefault, Last, LastOrDefault,

ElementAt, ElementAtOrDefault, DefaultIfEmpty(def)

• First, last or at index, or default if sequence is empty

• N.B. Default for type, e.g. default(int) would be 0

Single, SingleOrDefault

• Returns a specific member of a sequence, or default value, or throws

exception if more than one item in sequence

Person p = people.First(); // might throw exception

Person p = people.FirstOrDefault(); // might return null

Person q = people.Where(p => p.ID == 123).Single();

Person q = people.Single(p => p.ID == 123);

22

43 3.
LINQ Extension Methods

Deferred, Multiple Item Return Value Methods

Where

• Filters the sequence by specific criteria

IEnumerable: OrderBy, OrderByDescending, Reverse

IOrderedEnumerable: ThenBy, ThenByDescending

• Ascending and descending chained sorts, or reverse the order

Skip, SkipWhile

• Skips n members, or while lambda expression returns true

Take, TakeWhile

• Takes n members, or while lambda expression returns true

Distinct, Except, Intersect, Concat, Union, Zip

• Sequence where members are distinct, differ, match, all, or zipped 1-

1, 2-2, 3-3, and so on

44 3.
LINQ Extension Methods

Comparing Concat and Union

Two sequences of integers

Concat (includes duplicates)

Union (removes duplicates)

int[] lastYearScores = { 88, 56, 23, 99, 65 };
int[] thisYearScores = { 93, 78, 23, 99, 90 };

foreach (var item in
 lastYearScores.Concat(
 thisYearScores))

foreach (var item in
 lastYearScores.Union(
 thisYearScores))

88, 56, 23, 99, 65,
93, 78, 23, 99, 90

88, 56, 23, 99, 65,
93, 78, 90

23

45 3.
LINQ Extension Methods

AsSomething Conversions

AsEnumerable<T>()

• Convert IEnumerable to IEnumerable<T>

• “Execute” a query without creating a local collection

AsQueryable<T>() Convert IQueryable to IQueryable<T>

AsParallel()

• PLINQ is designed to exploit opportunities for parallelization,

however, not all queries benefit

• It partitions the data source into segments, and then executes the

query on separate threads on multiple processors

• The overhead can be more expensive than the speedup so PLINQ may

decide to execute some or all of the query sequentially

from cust in customers.AsParallel().WithExecutionMode(
 ParallelExecutionMode.ForceParallelism)

46 3.
LINQ Extension Methods

ToSomething Conversions

ToList and ToArray: return flat collection of results

ToDictionary

• One-to-one mapping of keys to objects

• Requires a lambda to define property to use for the key

ToLookup

• One-to-many mapping of keys to collections

• Requires a lambda to define property to use for the key

Dictionary<string, Product> products =
 db.Products.ToDictionary(p => p.ProductName);

ILookup<string, Product> products =
 db.Products.ToLookup(p => p.Category.Name);
IEnumerable<Product> bikes = products["Bike"];

24

47 3.
Projection

Primitive Results

p is a Product

p.Name is a string

var query =
 from p in db.Products
 select p;

var query = from p in db.Products
 select p.Name;

List<string> results = query.ToList();

var query = db.Products
 .Select(p => p); //optional

List<Product> results = query.ToList();

48 3.
Projection

Projecting into Types

A type that defines a subset of product information

Project into instances of this type using either query syntax

or Select extension method

Materialize results

public class ProductInfo {
 public string Name;
 public decimal Price; }

var query = from p in db.Products
 select new ProductInfo() {
 Name = p.Name,
 Price = p.ListPrice
 };

var query = db.Products.Select(
 p => new ProductInfo() {
 Name = p.Name,
 Price = p.ListPrice });

List<ProductInfo> results = query.ToList();

25

49 3.
Projection

Projecting into Anonymous Types

Project into instances of an anonymous type using either

query syntax or Select extension method

Materialize results and store in inferred variable

var query = from p in db.Products
 select new {
 Name = p.Name,
 Price = p.ListPrice
 };

var query = db.Products.Select(
 p => new {
 Name = p.Name,
 Price = p.ListPrice });

var results = query.ToList();

50 3.
Projection

SelectMany Example 1

SelectMany projects each element of a sequence to an

IEnumerable<T> and flattens the resulting sequences into

one sequence

Select the names of length four

SelectMany the names of length four

var nameList = new List<string> {
 "Matt", "Adam", "John", "Peter",
 "Owen", "Steve", "Richard", "Chris" };

var names1 = nameList.Where(n => n.Length == 4)
 .Select(n => n);

var names2 = nameList.Where(n => n.Length == 4)
 .SelectMany(n => n);

26

51 3.
Projection

SelectMany Example 2

We want to create a single sequence of words from a

sequence of sentences

Using SelectMany

Using LINQ 'from' chaining

var sentences = new List<string> {
 "Bob is quite excited.",
 "Jim is very upset."
};

var words = sentences.SelectMany(
 s => s.TrimEnd('.').Split(' '));

var words = from s in sentences
 from w in s.TrimEnd('.').Split(' ')
 select w;

52 3.
Projection

SelectMany Example 3

We want to get a flat list of products from categories

Using SelectMany

Using LINQ 'from' chaining

NorthwindEntities db = new NorthwindEntities();

var query = db.Categories.SelectMany(c => c.Products);

Select would give us this:

... = from c in db.Categories
 select c.Products;

var query = from c in db.Categories
 from p in c.Products
 select p;

27

53 3.
Joining and Grouping

Joining with Query Syntax

Joining by using where...==

Joining by using join...on...equals

Both are equivalent to using the Join extension method (see

next slide)

var query = from p in db.Products
 from c in db.Categories
 where p.CategoryID == c.CategoryID
 ...

var query = from p in db.Products join c in db.Categories
 on p.CategoryID equals c.CategoryID
 ...

54 3.
Joining and Grouping

Joining with Join extension method

Join between Categories and Products (1-many)

• The first lambda chooses property on Category (c) to join on

• The second lambda chooses property on Product (p) to join on

• The third lambda expression projects the results, merging properties

from each Category entity (cat) and its matching Product entity

(prod)

• One “row” returned for each product (77 in Northwind)

var query = db.Categories.Join(db.Products,
 c => c.CategoryID, p => p.CategoryID,
 (cat, prod) => new {
 CategoryID = cat.CategoryID,
 CategoryName = cat.CategoryName,
 ProductName = prod.ProductName });

28

55 3.
Joining and Grouping

Joining with GroupJoin extension method

GroupJoin between Categories and Products (1-many)

• The first lambda chooses property on Category (c) to join on

• The second lambda chooses property on Product (p) to join on

• The third lambda expression projects the results, merging properties

from each Category entity (cat) and its matching Product entities

(products)

• One “row” returned for each category (8 in Northwind)

var query = db.Categories.GroupJoin(db.Products,
 c => c.CategoryID, p => p.CategoryID,
 (cat, products) => new {
 CategoryID = cat.CategoryID,
 CategoryName = cat.CategoryName,
 NumberOfProducts = products.Count() });

56 3.
Joining and Grouping

Grouping with Query Syntax

Groups return List(IGrouping(TKey, TElement))

var query = from p in db.Products
 group p by p.Color into colourgroup
 select colourgroup;

List<IGrouping<string, Product>> results = query.ToList();

foreach(IGrouping<string, Product> group in results) {
 listBox1.Items.Add(group.Key); // Red, Blue, etc.
 foreach(Product prod in group) {
 listBox1.Items.Add(" " + prod.ProductName);
 }
}

29

57 3.
Tools for Learning

LINQPad 4 and 101 LINQ Samples

LINQPad

• Interactively query databases using LINQ

• 500 examples

LINQ Query Expressions (C#)
http://msdn.microsoft.com/en-us/library/bb397676.aspx

LINQPad
http://www.linqpad.net

Lambda Expressions (C#)
http://msdn.microsoft.com/en-us/library/bb397687.aspx

101 LINQ Samples – C#
http://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

1

1 4.

Module 4

Creating Classes and Implementing Type-Safe Collections

2 4.
Creating Classes and Implementing Type-Safe Collections

Contents

Topic Slide

Generics 3

Partial Classes 6

Design Patterns 7

Type-Safe Collections 9 Exam Topic: Store data in and retrieve data from

collections

 Choose a collection type (14)

Use typed vs. non-typed collections (4-24)

 Implement custom collections (4-28)

 Implement collection interfaces (4-26)

Exam Topic: Create and implement a class hierarchy

 Design and implement an interface (4-11)

 Create and implement classes based on the IComparable,

IEnumerable, IDisposable, and IUnknown interfaces (4-15)

2

3 4.
Generics

What Are They?

Define a template for a strongly-typed class

• Actual type is created at compile time

• Improves performance and reduces runtime errors

• Commonly used with collections

In MSDN documentation Gen(T) means

• Gen(Of T) for VB

• Gen<T> for C#

class Gen<T, U>
 where T : IComparable
 where U : Person {
 public T Key;
 public U Value;
}
Gen<int, Employee> ga =
 new Gen<int, Employee>();

4 4.
Generics

Generic Methods

Any type (including non-generic types) can have generic

methods

The generics apply to the types of method signature

• Specify the types when you call the method

class NonGen {
 public void M1<T>
 (T Value) {
 // ...
 }
}

NonGen n = new NonGen();
n.M1<int>(23);
n.M1<string>("Fred");

3

5 4.
Generics

Constraints

When you define a generic class or method, you can apply

restrictions to the kinds of types that can be used

Constraints on Type Parameters (C# Programming Guide)
http://msdn.microsoft.com/en-us/library/d5x73970.aspx

Constraint Description

where T: struct The type argument must be a value type

where T : class The type argument must be a reference type

where T : new() The type argument must have a public parameterless

constructor; must come last

where T : <base class name> The type argument must be or derive from the

specified base class

where T : <interface name> The type argument must be or implement the specified

interface; multiple can be specified; can also be

generic

where T : U The type argument supplied for T must be or derive

from the argument supplied for U

6 4.
Partial Classes

What Are Partial Classes?

Allow class definition to be split across multiple files

• Used by Visual Studio for designer-generated classes

VB does not require the keyword on all classes

partial class Person {
 public string FirstName;
}

partial class Person {
 public string LastName;
}

4

7 4.
Design Patterns

You Are Already Using Them

Pattern .NET Example

Observer, Subject Events and handlers

Iterator IEnumerable, foreach

Decorator Stream + BufferedStream + CryptoStream

Adapter Using COM with a RCW

Factory WebRequest.Create (HttpWebRequest, FtpWebRequest)

Strategy IComparable, IComparer, LINQ and lambda expressions

Composite Abstract base classes, System.Web.UI.Control

Template Login, GridView, and so on

Intercepting Filter IHttpModule

Page Controller ASP.NET Page class

MVC ASP.NET MVC

MVVM Prism 4 for WPF and Silverlight and Windows Phone

Discover the Design Patterns You're Already Using in the .NET Framework -
http://msdn.microsoft.com/en-us/magazine/cc188707.aspx

8 4.
Design Patterns

Microsoft patterns & practices

Recommendations on how to design and develop custom

applications using the Microsoft platform

Categories of patterns & practices offerings

• Solution Development Fundamentals

•Cloud Development

•Desktop Development

•Phone Development

• Services Development

•Web Development

Solution Development Fundamentals
http://msdn.microsoft.com/en-us/library/ff921347.aspx

5

9 4.
Type-Safe Collections

Queue and Stack

Queue is a First In First Out (FIFO) data structure

• Enqueue

• Dequeue

• Peek

Stack is a Last In First Out (LIFO) data structure

• Push

• Pop

• Peek

They both have generic versions which provide the same

capability but strongly-typed

• Queue<T>

• Stack<T>

10 4.
Type-Safe Collections

Dictionaries

Collection of key/value pairs

•Key must be unique

•Good for fast lookups based on key

•Not usually sorted or indexed

Common interfaces

• IDictionary and IDictionary<TKey, TValue>

Choose based on size of collection

•Hashtable: >10

• ListDictionary: <10

•HybridDictionary: switches between Hashtable & ListDictionary

•Dictionary<TKey, TValue>: generic dictionary is good for all sizes

Key Value

6

11 4.
Type-Safe Collections

Specialized Dictionaries

Strongly-typed

• StringDictionary: one string value per string key

•NameValueCollection: multiple strings per string key, indexed

•Dictionary<TKey, TValue>: all other types

Ordered by key

•OrderedDictionary:

faster when adding pre-ordered data

• SortedDictionary<TKey, TValue>:

faster when adding unordered data

Indexed and ordered by key

• SortedList and SortedList<TKey, TValue>

Smaller but slower than SortedDictionary

•Do not implement IList but have similar

methods like RemoveAt(int)

0

1

2

Key Value

Key Value

12 4.
Type-Safe Collections

LinkedList<T>

Each entry points to the entry before and after it

LinkedList properties and methods

• First, Last: pointers to these LinkedListNodes

•AddFirst(newNode), AddLast(newNode), AddBefore(node, newNode),

AddAfter(node, newNode): all return the new node

•Remove(node), RemoveFirst(), RemoveLast()

LinkedListNode instance properties

• List: pointer to parent LinkedList

•Previous, Next: pointers to sibling LinkedListNodes

•Value: value stored in node

7

13 4.
Type-Safe Collections

Other Collection-Related Types

CaseInsensitiveComparer

CollectionsUtil: creates case-insensitive collections

•CreateCaseInsensitiveHashtable()

•CreateCaseInsensitiveSortedList()

Abstract classes for custom collections

•CollectionBase, ReadOnlyCollectionBase, DictionaryBase

HashSet(T): high-performance set operations

• IntersectWith(), UnionWith(), IsSubsetOf(), IsSupersetOf(), etc.

Thread-safe generic collections

• SynchronizedCollection, SynchronizedKeyedCollection,

SynchronizedReadOnlyCollection

14 4.
Type-Safe Collections

Summary

Non-generic collection Generic equivalent

ArrayList List<T>

StringCollection List<string>

Queue, Stack Queue<T>, Stack<T>

SortedList SortedList<TKey, TValue>

Hashtable, NameValueCollection,

ListDictionary, HybridDictionary

Dictionary<TKey, TValue>

StringDictionary Dictionary<string, string>

OrderedDictionary SortedDictionary<TKey, TValue>

CollectionBase,

ReadOnlyCollectionBase

Collection<T>, ReadOnlyCollection<T>

n/a LinkedList<T>, HashSet<T>

1

1 5.

Module 5

Creating a Class Hierarchy by Using Inheritance

2 5.
Creating a Class Hierarchy by Using Inheritance

Contents

Object-Oriented Programming (C# and Visual Basic)
http://msdn.microsoft.com/library/dd460654.aspx

Exam Topic: Enforce encapsulation

 Enforce encapsulation by using properties, by using

accessors (public, private, protected), and by using

explicit interface implementation (5-5)

Exam Topic: Create and implement a class hierarchy

 Inherit from a base class (5-6)

Exam Topic: Create types

 Create value types (structs, enum), reference types,

generic types, constructors, static variables, classes

2

3 5.
Object-Oriented Programming

How to Use a Class Diagram

Add a Class Diagram to your project

Drag and drop from Class View

4 5.
Object-Oriented Programming

Inheritance Keywords

Keyword Meaning

: Inherit from one type

Implement one or more interfaces

override Change implementation of member; polymorphism supported

abstract Type cannot be instantiated

Member must be overridden

virtual Allow member to be overridden

new Replace member even if not overridable; polymorphism not

supported

base Instance of base type

this Instance of this type

sealed Type cannot be inherited from

3

5 5.
Object-Oriented Programming

What Is an Interface?

A contract; type promises to implement members

No implementation in the interface itself

C# types can implement multiple interfaces either implicitly

or explicitly:

public interface IMover { // default is internal
 void Move(); // cannot have access modifiers
}

class Car : IMover, IMover2 {
 void Move() { // ...
 void IMover2.Move() { // ...

1

1 6.

Module 6

Reading and Writing Local Data

2 6.
Reading and Writing Local Data

Contents

Exam Topic: Perform I/O operations

 Read and write files and streams

 Read and write from the network by using classes in the

System.Net namespace

 Implement asynchronous I/O operations

Topic Slide

Streams 3

Serialization 12

XML Serialization 17

Custom Serialization 21

Data Contracts 28

File System 33

Exam Topic: Serialize and deserialize data

 Serialize and deserialize data by using:

 binary serialization

 custom serialization

 XML Serializer

 JSON Serializer

 Data Contract Serializer

File System and the Registry (C# Programming Guide)
http://msdn.microsoft.com/library/vstudio/2kzb96fk.aspx

2

3 6.
Streams

What are Streams?

System.IO.Stream represents a stream of bytes

Backing store streams

• FileStream, MemoryStream, NetworkStream, …

Function streams (plug onto other streams)

• CryptoStream, GZipStream, DeflateStream, BufferedStream, …

Instance members

• CanSeek, CanRead, CanWrite, CanTimeout: true/false

• ReadByte(), WriteByte(byte): work with individual bytes; not as

efficient as working with byte arrays

• Read(byte[], offset, count), Write(byte[], offset, count)

StreamReader and StreamWriter are helper classes

• Plug onto streams so you don't have to deal with arrays of byte

4 6.
Streams

System.IO.Stream

Instance properties

• Length, Position: long

• CanSeek, CanRead, CanWrite, CanTimeout: true/false

Instance methods

• Seek(long, SeekOrigin): Begin, Current, End

• Flush(), Close(): ensure anything in buffer is flushed and resources

are released

• ReadByte(), WriteByte(byte): work with individual bytes; not as

efficient as working with bytes arrays

• Read(byte[], offset, count), Write(byte[], offset, count)

There are helper classes to avoid working with bytes

When chaining, best to Close the owner of the stream

3

5 6.
Streams

Reading and Writing Files and Streams

StreamReader is a helper class for streams

StreamWriter is helper class for streams

• Warning! StreamWriter has an internal buffer, so make sure you

Flush or Close before processing the resulting stream

StreamReader rdr = File.OpenText(@"c:\boot.ini");
while (rdr.Peek() != -1) {
 Console.WriteLine(rdr.ReadLine());
} // or Console.Write(rdr.ReadToEnd());
rdr.Close();
// or Console.WriteLine(File.ReadAllText("@c:\boot.ini"));

StreamWriter writer = File.CreateText(@"c:\somefile.txt");
writer.WriteLine("Hello");
writer.Close(); // flushes the buffer too

6 6.
Streams

Reading and Writing Text & Binary Files, or Strings

TextReader (abstract base class)

• StreamReader: helper class for reading any stream, especially if

stream contains text

• BinaryReader: helper class for reading custom binary data

• ReadInt32(), ReadBoolean(), and so on

• StringReader: for reading strings in memory; don’t confuse with a

StreamReader

TextWriter (abstract base class)

• StreamWriter

• BinaryWriter

• Write(...)

• StringWriter

4

7 6.
Streams

Using a MemoryStream

StreamWriter is helper class for streams

• Warning! StreamWriter has an internal buffer, so make sure you

Flush or Close before processing the resulting stream

MemoryStream creates in-memory streams

• Useful methods: ToArray(), WriteTo(Stream)

MemoryStream ms = new MemoryStream();
StreamWriter sw = new StreamWriter(ms);
sw.WriteLine("Hello");
sw.WriteLine("Goodbye");
sw.Flush(); // or Close if you are done

8 6.
Streams

Using a BufferedStream

Improve performance by buffering reads and writes

• FileStream has buffering built-in, but can improve performance of

NetworkStream

• Also use for custom stream implementations

Specify size of buffer in constructor (4096 default)

If you write more than buffer size, it cannot work!

byte[] data = new byte[512];
new Random().NextBytes(data); // random data

cs = new MyCustomStream(...);
bs = new BufferedStream(cs, 1024))

bs.Write(data, 0, data.Length);

Brad Abrams blog: http://blogs.msdn.com/brada/

5

9 6.
Streams

Using Compressed Streams

GZipStream

• Includes extra header with CRC check

• Best choice for integrity and compatibility with non-.NET systems

DeflateStream

• Uses same algorithm as GZip but no header

• Best choice for lots of small files which will be compressed and

decompressed by .NET applications

Closing the stream

• Both own the underlying stream so closing them will close that stream

too, unless you pass true as third parameter (next slide)

10 6.
Streams

Using Compressed Streams

FileStream s = File.OpenRead("source.txt");
FileStream d = File.Create("destination.gzip");
var gz = new GZipStream(d, CompressionMode.Compress, true);
int i = s.ReadByte(); // returns -1 if EOF
while (i <> -1) {
 gz.WriteByte((byte)i);
 i = s.ReadByte();
}
gz.Close(); // will leave underlying stream (d) open because
 // true was passed into constructor

s.ReadByte destination.gzip d gz.WriteByte source.txt

6

11 6.
Streams

Memory Mapped Files

Memory mapped files can be used to

• Efficiently edit very large files

• Create shared memory for inter-process communication

System.IO.MemoryMappedFiles

• Exposes memory mapping functionality provided by Windows API

System.IO.UnmanagedMemoryAccessor

• Enables random access to unmanaged memory similar to how

UnmanagedMemoryStream enables sequential access to such memory

12 6.
Serialization

What Is It?

Convert an object into a sequence of bytes for storage or

transferral

• Used behind-the-scenes in other technologies e.g. services

Common serialization namespaces in .NET

• System.Runtime.Serialization

• BinaryFormatter

• SoapFormatter

• DataContractSerializer

• System.Xml.Serialization

• System.Runtime.Serialization.Json

• DataContractJsonSerializer

• System.Web.Script.Serialization

7

13 6.
Serialization

Deserialization

Deserialization is the reverse of serialization

• Deserialize method returns object, so convert it

With complex objects, the ObjectManager deals with

backward and forward references automatically

Constructors are NOT called during runtime deserialization

• Runtime deserialization writes directly to memory when deserializing

an object

• Implement IDeserializationCallback.OnDeserialization method to

execute initialization code at the end of the process

14 6.
Serialization

Classes That Can Be Runtime Serialized

Apply the SerializableAttribute to type

• Enables automatic serialization of ALL fields

• Apply [NonSerialized] to a field to prevent it being serialized

Security

• Private fields are serialized by default so this could be a security hole

• Code needs SecurityPermission with the SerializationFormatter flag

set

[Serializable] class CartItem : IDeserializationCallback {

 public int ID, decimal Price, int Quantity;

 [NonSerialized] public decimal Total;

 void OnDeserialization(object sender) {
 Total = Price * Quantity;
 }
}

8

15 6.
Serialization

Version Compatibility

If you add new members in the future, deserializing a

stream created by the previous version will throw an

exception because the new member data is missing

• OptionalFieldAttribute sets the member to null if it is missing

Best practice

• Never remove serialized field

• Never apply NonSerialized when it wasn't applied earlier

• Never change names or types of fields

• For optional fields, set reasonable defaults in OnDeserialization

[OptionalField] public bool Taxable

16 6.
Serialization

Guidelines

When in doubt, apply [Serializable] to types with fields

• This attribute is NOT inherited so it must be applied to ALL types in

the inheritance hierarchy

Mark calculated or temporary fields as NonSerialized

Note: arrays and collections are serializable if the items are

serializable

[Serializable]
public class Animal { private string Name; ... }

[Serializable]
public class Dog : Animal { ... }

9

17 6.
XML Serialization

XmlSerializer

The XmlSerializer can be used to customize the way a type

is serialized into XML and so is often used with services to

ensure the correct schema of XML

Mark your type with attributes to customize the process

public class Contact
{
 [XmlElement(Name="FName")]
 public string FirstName;
 public string LastName;
 [XmlAttribute(Name="age")]
 public string Age;
}

<Contact age="23">
 <FName>Fred</FName>
 <LastName>Smith</LastName>
</Contact>

18 6.
XML Serialization

How to Control XML Serialization

XmlAnyAttribute

XmlAnyElement

Members (that return an array) that can contain any

unknown XML attributes or elements

XmlArray Members of the array will be generated as members of an

XML array

XmlArrayItem Derived types that can be inserted into an array

XmlAttribute Member will be serialized as an XML attribute

XmlElement Member will be serialized as an XML element (default)

XmlIgnore Ignore the member when the class is serialized

XmlInclude The class should be included when generating schemas

XmlRoot Controls the root item name of the class and any namespace

XmlText The property or field should be serialized as XML text

XmlType The name and namespace of the XML type

10

19 6.
XML Serialization

How to Conform to an XML Schema

XML Schema Definition tool (xsd.exe)

• Generates XML schema from classes in a runtime assembly or common

language runtime classes from XDR, XML, and XSD files

xsd file.xsd {/classes | /dataset}
 [/element:element]
 [/enableLinqDataSet]
 [/language:language]
 [/namespace:namespace]
 [/outputdir:directory]
 [URI:uri]
 [/parameters:file.xml]

xsd {file.dll | file.exe}
 [/outputdir:directory]
 [/type:typename [...]]
 [/parameters:file.xml]

20 6.
XML Serialization

Other XML-Related .NET Framework SDK Tools

XML Serializer Generator Tool (sgen.exe)

• When not used, XmlSerializer generates code and a serialization

assembly for each type every time an application is run

• Pre-generate a serialization assembly to improve performance

• The following command line creates MyType.XmlSerializers.dll

containing a serializer only for type Person

Tools for SOAP services

• wsdl.exe: generate proxy code for XML Web services

• disco.exe: discover XML Web services

sgen /a:MyType.dll /t:Person

11

21 6.
Custom Serialization

ISerialization

Implement ISerialization to replace automatic serialization

and deserialization process with your own

• Constructor: called during deserialization

• GetObjectData method: called during serialization

[Serializable] class ShoppingCartItem : ISerializable {
 protected ShoppingCartItem(SerializationInfo info,
 StreamingContext context) {
 productId = info.GetInt32("Product ID");
 // ...
 }
 public virtual void GetObjectData(SerializationInfo info,
 StreamingContext context) {
 info.AddValue("Product ID", productId);
 // ...
 }
}

22 6.
Custom Serialization

Responding to Serialization Events

Attributes that can be applied to methods that

• Accept a StreamingContext parameter and return void

Four attributes

• OnSerializing / OnSerialized : before / after serialization

• OnDeserializing / OnDeserialized : before / after deserialization

Each attribute can only be applied once, but multiple can

be applied to the same method

[OnSerializing] [OnSerialized]
void CalculateTotal(StreamingContext sc) {
 total = price * quantity;
}
[OnDeserialized]
void CheckTotal(StreamingContext sc) {
 if (total == 0) CalculateTotal(sc); }

12

23 6.
Custom Serialization

Change Serialization Based on Context

StreamingContext properties

• Context: defaults to null, State: defaults to All

• Must be passed in when constructing a formatter

State is bit flag indicating the source or destination

• All: any of the below (default)

• CrossAppDomain, CrossProcess, CrossMachine: between application

domains, processes, or machines

• File, Persistence, Other : file, database, or unknown destination

• Remoting: remoting to an unknown destination

• Clone: copy of the object

bf = new BinaryFormatter(null, new StreamingContext(
 StreamingContextStates.File |
 StreamingContextStates.Persistence));

24 6.
Custom Serialization

How to Create a Custom Formatter

Implement IFormatter interface

• Both BinaryFormatter and SoapFormatter implement it

FormatterServices provides static help methods

13

25 6.
Custom Serialization

Surrogate Serialization

Allows a class to serialize another

• Can therefore serialize a class not marked as serializable

Must implement ISerializationSurrogate

• GetObjectData(), SetObjectData()

Must add to surrogate selector for the formatter

SurrogateSelector ss = new SurrogateSelector();
ss.AddSelector(typeof(Person),
 new StreamingContext(...), new PersonSurrogate());
BinaryFormatter bf = new BinaryFormatter();
bf.SurrogateSelector = ss;
// serialize as normal

class PersonSurrogate : ISerializationSurrogate { ... }

26 6.
Custom Serialization

Unsafe Deserialization

UnsafeDeserialize method

• Only the immediate caller is required to have SerializationFormatter

permission

• In full trust scenarios, UnsafeDeserialize provides better performance

than Deserialize

• Do not use this method if your code can be called from partially

trusted code, use Deserialize instead

14

27 6.
Serialization

Summary Comparison

Namespace System.Runtime

.Serialization

System.Xml

.Serialization

Types that

perform

serialization

BinaryFormatter

SoapFormatter

IFormatter

XmlSerializer

Required on

your type

[Serializable] Parameterless

constructor

What gets

serialized

All fields Public fields and

properties

To exclude [NonSerialized] [XmlIgnore]

To customize ISerializable,

[OnSerializing], etc.

[Xml…], [Soap…]

attributes

28 6.
Data Contracts

Serializing Object References

By default the DataContractSerializer serializes objects by

value

To instruct the DataContractSerializer to preserve object

references, especially for circular references

[DataMember] public SomeClass A = someInstance;
[DataMember] public SomeClass B = someInstance;

[DataContract(IsReference=true)]

<A>contents of someInstance
contents of someInstance

contents of someInstance
<B ref="1" />

Interoperable Object References
http://msdn.microsoft.com/en-us/library/cc656708.aspx

15

29 6.
Data Contracts

Data Member Default Values

When a reference type is null, xsi:nil is used in XML

To exclude element when values are equal to defaults

[DataMember]
public string FirstName = null;

DataMemberAttribute.EmitDefaultValue - http://msdn.microsoft.com/en-us/library/
system.runtime.serialization.datamemberattribute.emitdefaultvalue.aspx

<FirstName xsi:nil="true" />

[DataMember(EmitDefaultValue=false)]
public int Height = 0;
[DataMember(EmitDefaultValue=false)]
public int Weight = 10;

<Weight>10</Weight>

30 6.
Data Contracts

Data Member Order

Members ordered base type first, then alphabetically

To order members explicitly

What order would this use?

Because members without order written first

[DataMember] public string FirstName;
[DataMember] public string LastName;
[DataMember] public byte Age;

Data Member Order
http://msdn.microsoft.com/en-us/library/ms729813.aspx

<Age> ...
<FirstName> ...
<LastName> ...

[DataMember(Order = 1)] ... FirstName;
[DataMember(Order = 2)] ... LastName;
[DataMember(Order = 3)] ... Age;

<FirstName> ...
<LastName> ...
<Age> ...

[DataMember] ... FirstName;
[DataMember(Order = 1)] ... LastName;
[DataMember] ... Age;

<Age> ...
<FirstName> ...
<LastName> ...

16

31 6.
Data Contracts

XML Namespaces

It is best practice to provide a namespace for your data

contracts rather than use the default tempuri.org

You can do this globally by using the assembly-level

attribute ContractNamespace

[DataContract(
 Namespace="http://www.firebrand.com/hr/2012/11")]
public class Employee {

[assembly:ContractNamespace(
 "http://www.firebrand.com/hr/2012/11",
 ClrNamespace = "Firebrand")]

Data Contract Names
http://msdn.microsoft.com/en-us/library/ms731045(v=vs.100).aspx

32 6.
JavaScriptSerializer

Deserializing JavaScript Object Notation (JSON)

Provides serialization and deserialization functionality for

AJAX-enabled applications

• For when you want to work with JavaScript Object Notation (JSON) in

managed code

To deserialize a JSON string, use the Deserialize or

DeserializeObject methods

• Deserialize(String, Type): Converts a JSON-formatted string to an

object of the specified type

• Deserialize<T>(String): Converts the specified JSON string to an

object of type T

• DeserializeObject: Converts the specified JSON string to an object

graph

JavaScriptSerializer Class
http://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptserializer.aspx

17

33 6.
File System

Managing Drives

DriveInfo.GetDrives() static method

• Returns an array of DriveInfo

DriveInfo instance properties

• Name: "C:\"

• VolumeLabel: ""

• DriveFormat: "NTFS", "FAT32"

• DriveType: CDRom, Fixed, Network, NoRootDirectory, Ram,

Removable, Unknown

• AvailableFreeSpace, TotalFreeSpace, TotalSize: long

• IsReady: true/false

• RootDirectory: DirectoryInfo instance

34 6.
File System

Managing Files and Folders

DirectoryInfo instance members

• GetDirectories(): array of DirectoryInfo

• GetFiles(): array of FileInfo

• Exists: true/false

• Create()

Directory static methods

• Exists("...")

• CreateDirectory("..."), Delete("...")

• GetCurrentDirectory(), SetCurrentDirectory("...")

18

35 6.
File System

Creating, Copying, Moving, and Deleting Files

FileInfo instance methods

• Only needs to check permissions once

File static methods

• Checks permissions on every method call

var fi = new FileInfo("...");
StreamWriter sw = fi.CreateText();
FileStream fs = fi.Create();
fi.CopyTo("destination"); fi.MoveTo("destination");
fi.Delete(); fi.Encrypt(); fi.Decrypt();
fs = fi.Open(...); // specify file options (on next slide)
fs = fi.OpenRead(); fs = fi.OpenWrite();
StreamReader sr = fi.OpenText();

StreamWriter sw = File.CreateText("...");
File.Copy("...", "destination");
StreamReader sr = File.OpenText("...");

36 6.
File System

File Enumerations

FileAccess

• Read, Write, ReadWrite: request these capabilities

FileMode

• Create: overwrites existing file

• CreateNew: throws exception if file exists

• Open: throws exception if file doesn’t exist

• OpenOrCreate: opens if file exists, else creates

• Append: append to existing file

• Truncate: empty file, then append

FileShare

• None, Read, Write, ReadWrite, Delete: allow these actions for other

processes that access this file

19

37 6.
File System

Enumeration

New enumeration APIs for System.IO.Directory and

System.IO.DirectoryInfo that return IEnumerable(T)’s

instead of arrays which is more efficient because

• They do not need to allocate a (potentially large) array

• You can access the first results immediately instead of waiting for the

entire enumeration to take place

New convenience APIs for efficiently reading, writing, and

appending lines from/to a text file using

IEnumerable(String)

• Useful in LINQ scenarios where you may want to quickly and

efficiently query the contents of a text file and write out the results

to a log file without allocating any arrays

38 6.
File System

Monitoring the File System

fsw.Path = "c:\test\";
fsw.IncludeSubdirectories = true;
fsw.Filter = "*.xml";
fsw.NotifyFilter =
 NotifyFilters.FileName | NotifyFilters.LastWrite;
fsw.EnableRaisingEvents = true;

fsw.Changed += fsw_Changed;

void fsw_Changed(object sender,
 FileSystemEventArgs e)
{
 // e.ChangeType, e.FullPath
}

FileSystemWatcher fsw =
 new FileSystemWatcher();

1

1 7.

Module 7

Accessing a Database

2 7.
Accessing a Database

Contents

Topic Slide

Overview 3

EF 4.1 9

EF 4.2 & 4.3 16

EF 5.0 17

LINQ to XML 18

ADO.NET “Classic” 23

Exam Topic: Consume data

 Retrieve data from a database

Update data in a database

Exam Topic: Query and manipulate data and objects by

using LINQ

 Read, filter, create, and modify data structures by using

LINQ to XML

Connecting to Data in Visual Studio
http://msdn.microsoft.com/library/vstudio/ms171886.aspx

Editing Data in Your Application
http://msdn.microsoft.com/library/vstudio/ms171928.aspx

2

3 7.
Overview

Data APIs in .NET (2002-2007)

ADO.NET “Classic”

• .NET Framework 1.0, 1.1, and 2.0

* .NET 2.0 adds minor improvements like TableAdapters

.NET Data Provider

(SqlClient, OracleClient, etc.)

DataSet (change tracking, filtering,

sorting, XML/XSD, strongly-typed)
Custom Classes and Collections

DataAdapter

SQL Server Oracle Etc.

4 7.
Overview

Object-Relational Mapping

What are ORMs?

• Objects are more natural to work with for programmers...

• ...but relational data is better for storage

• Mapping converts CRUD on objects to CRUD on relational data

Philosophy of ORM

• If you do most work through stored procedures (SELECT, etc.) you will

gain very little from using an ORM so use “Classic” ADO.NET instead

The objects should be “persistence ignorant”

• Members are mostly properties to store column values

• Can have methods for validation and business logic

• Should NOT have methods to store data

3

5 7.
Overview

Data APIs in .NET (2008-2011)

LINQ

• .NET Framework 3.5

.NET Data Provider

(SqlClient, OracleClient, etc.)

LINQ

LINQ to Entities LINQ

to SQL

.NET Data Provider

(SqlClient, OracleClient, etc.)

DataSet (change tracking, filtering, sorting,

XML/XSD, strongly-typed)
Custom Classes and Collections

DataAdapter

Entity SQL

Entity Data Model

EntityClient

SQL Server Oracle Etc.

LINQ to

DataSets

LINQ to

Objects

LINQ

to XML

SQL Server Oracle Etc.

and Entity Framework

SP1 and .NET 4

6 7.
Overview

Entity Framework vs. LINQ to SQL

LINQ to SQL, .NET 3.5

• Created by C# team

• Simple ORM; one-to-one object-to-table

mapping (although it does support a

discriminator column for simple

inheritance scenarios)

• SQL Server only

• Will be supported, but not improved

Entity Framework, .NET 3.5 SP1

• Created by SQL Server team

• Complex, powerful, flexible ORM

• Heterogeneous data sources

• Future of Microsoft Data APIs

4

7 7.
Overview

Data APIs in .NET (2012+)

.NET Framework 4.5

• Appendix A: ADO.NET “Classic” and XML

• Appendix B: LINQ (and common providers)

• This Module: Entity Framework

.NET Data Provider (SqlClient, OracleClient, etc.)

LINQ

LINQ to Entities LINQ

to SQL

.NET Data Provider

(SqlClient, OracleClient, etc.)

DataSet (change tracking, filtering, sorting,

XML/XSD, strongly-typed)
Custom Classes and Collections

DataAdapter

Entity SQL

Entity Data Model

EntityClient

SQL Server Oracle Etc.

LINQ to

DataSets

LINQ to

Objects

LINQ

to XML

SQL Server Oracle Etc.

DbContext  ObjectContext

8 7.
Overview

Data Access APIs: Why Use…

ADO.NET “Classic”

• Legacy code, performance, if you mostly use SProcs

ADO.NET Entity Framework

• Database or Model First: separate conceptual model from storage

model with complex mappings

• Code First with DbContext: for simple one-to-one mapping models

and automatic generation of model or database

WCF Data Services or ASP.NET Web API OData

• Expose data via OData (HTTP/REST-architecture service)

Windows Azure Storage

• Scalable cloud storage options

5

9 7.
EF 4.1

What is Microsoft ADO.NET Entity Framework 4.1?

aka “Magic Unicorn Edition” for VS2010 and later

EF 4.1 introduces two new features

• The DbContext API is a simplified abstraction over ObjectContext and

a number of other types

• Code First is a new development pattern that provides an alternative

to the Database First and Model First patterns

Code First is focused around defining your model using .NET

classes

• These classes can then be mapped to an existing database or be used

to generate a database schema

• Additional configuration can be supplied using Data Annotations or via

a fluent API

EF 4.1 Released
http://blogs.msdn.com/b/adonet/archive/2011/04/11/ef-4-1-released.aspx

10 7.
EF 4.1

Create the Model

Create the model using POCO classes

public class Category
{
 public string CategoryId { get; set; }
 public string Name { get; set; }
 public virtual ICollection<Product> Products { get; set; }
}

public class Product
{
 public int ProductId { get; set; }
 public string Name { get; set; }
 public string CategoryId { get; set; }
 public virtual Category Category { get; set; }
}

6

11 7.
EF 4.1

Create a Context

Define a context that derives from

System.Data.Entity.DbContext and exposes a typed

DbSet<TEntity> for each class in my model

You will need to add a reference to the EntityFramework.dll

assembly

public class ProductContext : DbContext
{
 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }
}

12 7.
EF 4.1

Mapping to an Existing Database

The easiest way to point Code First to an existing database

is to add a .config connection string with the same name as

your derived DbContext

<connectionStrings>
 <add name="ProductContext"
 providerName="System.Data.SqlClient"
 connectionString="Data Source=.\SQLEXPRESS;
 Initial Catalog=Products;
 Integrated Security=true;"/>
</connectionStrings>

7

13 7.
EF 4.1

Modifying Data

Use the DbContext

If you do not specify a connection string for an existing

database then DbContext by convention creates a database

for you on localhost\SQLEXPRESS

• The database is named after the fully qualified name of your derived

context

using (var db = new ProductContext())
{
 var food = new Category
 { CategoryId = "FOOD", Name = "Foods" };
 db.Categories.Add(food);
 int recordsAffected = db.SaveChanges();
}

14 7.
EF 4.1

Annotations

You can apply annotations to your model

Annotations include

• Key, StringLength, MaxLength, ConcurrencyCheck, Required,

Timestamp, ComplexType, Column, Table, InverseProperty,

ForeignKey, DatabaseGenerated, NotMapped

public class Category
{
 [Key]
 public string CategoryId { get; set; }
 [MaxLength(20, ErrorMessage="20 chars max!")]
 public string Name { get; set; }

8

15 7.
EF 4.1

Fluent API

Considered a more advanced feature and we would

recommend using Data Annotations unless your

requirements require you to use the fluent API

Tutorial: Code First with EF 4.1
http://codefirst.codeplex.com/

protected override void OnModelCreating(
 DbModelBuilder modelBuilder)
{
 modelBuilder.Entity<Supplier>()
 .Property(s => s.Name)
 .IsRequired();
}

16 7.
EF 4.2 and 4.3

Migration Support

For example, if you wanted to add a new column to a Blogs

table called Url

EF 4.3 Released
http://blogs.msdn.com/b/adonet/archive/2012/02/09/ef-4-3-released.aspx

public partial class AddBlogUrl : DbMigration {
 public override void Up() {
 AddColumn("Blogs", "Url", c => c.String());
 }
 public override void Down() {
 DropColumn("Blogs", "Url");
 }
}

9

17 7.

EF 5.0

Entity Framework 5.0 Performance Improvements
http://blogs.msdn.com/b/adonet/archive/2012/02/14/sneak-preview-entity-
framework-5-0-performance-improvements.aspx

Deployed with .NET Framework 4.5

• Automatic compilation of LINQ to Entities queries

• Support for: enums, table-valued functions, spatial data types

(DbGeography and DbGeometry)

• Multiple-diagrams per model

allows you to have several

diagrams that visualize

subsections of your

overall model

• Shapes can have

colour applied

18 7.
LINQ to XML

Generating an XML File from LINQ-able Entities

“products” could be an entity set or collection

XElement xml = null;

xml = new XElement("Products",
 from p in products
 select new XElement("Product",
 new XElement("ProductID", p.ProductID),
 new XElement("Name", p.Name),
 new XElement("ProductNumber", p.ProductNumber),
 new XElement("Color", p.Color),
 new XElement("Cost", p.Cost),
 new XElement("ListPrice", p.ListPrice),
 new XElement("Size", p.Size)));

xml.Save(productFileName);

10

19 7.
LINQ to XML

Generating a Collection from an XML File

Convert each child XML element into an entity

XDocument doc = XDocument.Load(productFileName);
var query = from product in doc.Descendants("Product")
 select new Product
 {
 ProductID = Convert.ToInt32(
 product.Element("ProductID").Value),
 Name = product.Element("Name").Value,
 ProductNumber = product.Element("ProductNumber").Value,
 Color = product.Element("Color").Value,
 Cost = product.Element("Cost").Value,
 ListPrice = product.Element("ListPrice").Value,
 Size = product.Element("Size").Value
 };

20 7.
LINQ to XML

Example with Let

Imagine that you need to convert this XML into a collection

of Car objects

<cars>
 <car name="Toyota Coupe">
 <profile name="Vendor" value="Toyota"/>
 <profile name="Model" value="Celica"/>
 <profile name="Doors" value="2"/>
 <support name="Racing" value="yes"/>
 <support name="Towing" value="no"/>
 </car>
 <car name="Honda Accord Aerodec">
 <profile name="Vendor" value="Honda"/>
 <profile name="Model" value="Accord"/>
 <profile name="Doors" value="4"/>
 <support name="Racing" value="no"/>

public class Car {
 public string Name;
 public string Vendor;
 public string Model;
 public int Doors;
 public bool Racing;
}

11

21 7.
LINQ to XML

What Does Let Do?

XDocument xd = XDocument.Load("cars.xml");
var query = from car in xd.Root.Elements("car")
 let profiles =
 from profile in car.Elements("profile")
 select new {
 Name = profile.Attribute("name").Value,
 Value = profile.Attribute("value").Value
 }
 let supports =
 from support in car.Elements("support")
 select new {
 Name = support.Attribute("name").Value,
 Value = support.Attribute("value").Value
 }
...

 let allows you to define local variables in LINQ

22 7.
LINQ to XML

Using let

...
 select new Car {
 Name = car.Attribute("name").Value,
 Vendor = profiles.Single(
 prof => prof.Name == "Vendor").Value,
 Model = profiles.Single(
 prof => prof.Name == "Model").Value,
 Doors = int.Parse(profiles.Single(
 prof => prof.Name == "Doors").Value),
 Racing = supports.Single(
 sup => sup.Name == "Racing").Value == "yes"
 };
List<Car> cars = query.ToList<Car>();

 …and then use it in subsequent query clauses

Another example:

The Linq "let" keyword
http://www.codethinked.com/the-linq-quot3bletquot3b-keyword

12

23 7.
ADO.NET “Classic”

Connections, Commands, DataReaders

Must open connection before executing commands

Common CommandBehaviors

• CloseConnection, SequentialAccess, SingleResult, SingleRow

reader.Close(); // close reader before reading parameters
int outputParam = cmd.Parameters[2].Value;
con.Close(); // or use CommandBehavior.CloseConnection

var con = new SqlConnection(conStr);
var cmd = new SqlCommand(sql, con);
con.Open(); // open connection before executing commands

var reader = cmd.ExecuteReader(CommandBehavior.SingleResult);
while(reader.Read()) // returns true if another row exists
{
 // process row
}
// reader.NextResult(); // returns true if another result exists

1

1 8.

Module 8

Accessing Remote Data

2 8.
Accessing Remote Data

Contents

Topic Slide

OData 3

WCF Data Services 7

HTTP Methods 9

OData .NET Clients 12

HTTP Clients 16

Exam Topic: Consume data

 Consume JSON and XML data

 Retrieve data by using web services

Exam Topic: Validate application input

 Validate JSON data

2

3 8.
OData

Overview

OData is a standard for building HTTP

services that follow standards for

querying the data model

• It defines a query syntax using URIs similar to

SQL

Two technologies for creating an OData

service

• WCF Data Services (.NET 3.5 +)

• ASP.NET Web API OData (.NET 4.5 +)

WCF Data Services Blog
http://blogs.msdn.com/b/astoriateam/

WCF Data Services
http://msdn.microsoft.com/en-us/data/odata.aspx

WCF Data Services and OData At-a-Glance
http://msdn.microsoft.com/en-us/data/aa937697

4 8.
OData

URL Query Syntax Basics

To select or order by multiple columns use a comma-

separated list

Case-sensitive!

Must use $ prefix for keywords

• $select, $filter, $orderby, $expand

• $top, $skip

• /$count: return int

• $inlinecount: a count is included with the feed

• $links

• $metadata

http://.../AW.svc/Contacts?
 $select=FirstName,LastName,Age&
 $filter=State eq 'CA' and Price gt 500&
 $orderby=LastName,Age

OData: URI Conventions
http://www.odata.org/documentation/uri-conventions#QueryStringOptions

3

5 8.
OData

$expand

The syntax of a $expand query option is a comma-separated

list of Navigation Properties

• Each Navigation Property can be followed by a forward slash and

another Navigation Property to enable identifying a multi-level

relationship

Expand System Query Option ($expand)
http://www.odata.org/documentation/uri-conventions#ExpandSystemQueryOption

/Categories?$expand=Products

/Categories?$expand=Products/Suppliers

/Products?$expand=Category,Suppliers

6 8.
OData

URI Query Syntax Examples

URI Returns

/Customers('ALFKI')/

ContactName

An XML element that contains the ContactName

property value for a specific Customer

/Customers('ALFKI')/

ContactName/$value

Only the string "Maria Anders" without the XML

element

/Customers('ALFKI')/Orders All the orders that are related to a specific Customer

/Orders(10643)/Customer A reference to the Customer entity to which a specific

Order entity belongs

/Orders?$filter=not

endswith(ShipPostalCode,'100')

All the orders the postal codes of which do not end in

100

/Categories(1)/$links/Products Links to the data instead of the actual data e.g.

<uri>http://.../Products(4)</uri>

/Categories?$select=Name,

Products&$expand=Products

Must select Products if expanding Products

Accessing Data Service Resources (WCF Data Services)
http://msdn.microsoft.com/en-us/library/dd728283.aspx

4

7 8.
WCF Data Services

How to Create

In any web project

• Project – Add New Item – WCF Data Service

• Create a context class that represents your data

• ADO.NET Entity Data Model is easiest

• Or any class that has properties of type IQueryable<T> where T is

an “entity” (and optionally implements IUpdatable)

• Use context class in DataService<TContext>

• Set permissions

public class BlogService : DataService<BlogContext> {
 public static void InitializeService(
 DataServiceConfiguration config) {
 config.SetEntitySetAccessRule("Blogs", EntitySetRights.All);
 config.SetServiceOperationAccessRule(
 "MyServiceOperation", ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2; } }

8 8.
WCF Data Services

Intercepting Queries and Changes

WCF Data Services enables an application to intercept

request messages so that you can add custom logic

• Define a query interceptor for the Orders entity set

• Check operations to determine type of change

[QueryInterceptor("Orders")]
public Expression<Func<Order, bool>> OnQueryOrders()
{
 return o => o.Customer.ContactName ==
 HttpContext.Current.User.Identity.Name;
}

Interceptors (WCF Data Services)
http://msdn.microsoft.com/en-us/library/dd744842.aspx

[ChangeInterceptor("Products")]
public void OnChangeProducts(
 Product product, UpdateOperations operations)

5

9 8.
WCF Data Services

Custom Data Service Providers

A Data Service Provider is simply a .NET class that sits

between the Data Services Framework and the underlying

data source that’s being exposed

Custom Data Service Providers
http://msdn.microsoft.com/en-us/data/gg191846.aspx

public class MyDataSource : IUpdatable {
 public IQueryable<Product>Products { get { ...

10 8.
HTTP Methods

MERGE

To update a column of a record without overwriting other

columns, use MERGE verb and only pass the changed column

values

Use SaveChangesOptions.ReplaceOnUpdate for PUT

Warning!

• By default the WCF Data Services client library passes all properties in

MERGE, not just the ones that have changed

MERGE /AW.svc/Contacts(23)
Host: AdventureWorks.com
Content-Type: application-json
{ State: 'CA' }

WCF Data Services: Optimizing bandwidth usage and performance with updates
http://blogs.infosupport.com/wcf-data-services-optimizing-updates-in-the-client-
library/

6

11 8.
HTTP Methods

Support for CRUD Operations

To enable CRUD operations, IIS must allow the following

methods on the .svc extension

• PUT

• DELETE

12 8.
HTTP Methods

X-HTTP-Method

Some network intermediaries block HTTP verbs like DELETE

or PUT or MERGE

• “Verb tunnelling” or “POST tunnelling” gets around this

Uses HTTP POST to “wrap” another verb

To enable on client

POST /Categories(5)
HTTP/1.1
Host: AdventureWorks.com
X-HTTP-Method: DELETE

DataServiceContext.UsePostTunneling = true;

2.2.5.8 X-HTTP-Method
http://msdn.microsoft.com/en-us/library/dd541471(PROT.10).aspx

7

13 8.
OData .NET Clients

Loading Related Entities

DataServiceContext does not support lazy loading so you

must use the LoadProperty method to explicitly load related

entities

Or use Expand method to pre-load (“eager loading”)

... from o in aw.Orders.Expand("LineItems") ...

context.LoadProperty(order, "LineItems");
foreach(var item in order.LineItems) {

DataServiceContext.LoadProperty Method - http://msdn.microsoft.com/en-us/library/
system.data.services.client.dataservicecontext.loadproperty.aspx

14 8.
OData .NET Clients

Troubleshooting

To find out how a LINQ to OData query will translate into an

OData URL use RequestUri

var query = from p in db.Products
 where p.Color == "Red"
 select p;
string uri =
 ((DataServiceQuery)query).RequestUri.ToString();

http://localhost:1034/AW.svc/Products()
 ?$filter=Color eq 'Red'

8

15 8.
OData .NET Clients

Set Headers in the Client Request

Create an event handler for SendRequest

Add the header

How to: Set Headers in the Client Request (WCF Data Services)
http://msdn.microsoft.com/en-us/library/gg258441.aspx

context.SendingRequest += new EventHandler
 <SendingRequestEventArgs>(OnSendingRequest);

private static void OnSendingRequest(
 object sender, SendingRequestEventArgs e) {
 // Add an Authorization header that contains an
 // OAuth WRAP access token to the request.
 e.RequestHeaders.Add("Authorization",
 "WRAP access_token=\"123456789\"");
}

16 8.
HTTP Clients

async and await work as a pair

By using the new async and await keywords, you can use

resources to create an asynchronous method almost as

easily as you create a synchronous method

async Task<int> AccessTheWebAsync()
{
 HttpClient client = new HttpClient();
 Task<string> getStringTask =
 client.GetStringAsync("http://msdn.microsoft.com");
 DoIndependentWork(); // executes while async op works
 string urlContents = await getStringTask;
 return urlContents.Length;
}

async modifier, Task<T> return type, Async suffix for name

Waits until task is complete, control returns to

the caller of AccessTheWebAsync

9

17 8.
HTTP Clients

WebClient

Provides common methods for sending data to and receiving

data from a resource identified by a URI

WebClient Class
http://msdn.microsoft.com/en-us/library/system.net.webclient(v=vs.110).aspx

Method Description

DownloadData Downloads resource as a Byte array from the URI specified

DownloadDataAsync Downloads resource as a Byte array from the URI specified as

an asynchronous operation

DownloadDataTaskAsync Downloads resource as a Byte array from the URI specified as

an asynchronous operation using a task

DownloadFile, … Downloads resource with the specified URI to a local file

DownloadString, … Downloads the requested resource as a String

UploadData, … Uploads the data (a byte array) as …

UploadFile, … Uploads a local file as …

UploadValues, … Uploads a NameValueCollection as …

18 8.
HTTP Clients

Upload Values

Uploads the specified name/value collection to the resource

identified by the specified URI

• For an HTTP resource, the POST method is used

• If the Content-type header is null, the UploadValues method sets it to

"application/x-www-form-urlencoded"

WebClient.UploadValues Method (String, NameValueCollection)
http://msdn.microsoft.com/en-us/library/9w7b4fz7.aspx

var myWebClient = new WebClient();
var nvc = new NameValueCollection();
nvc.Add("Name", name);
nvc.Add("Address", address);
nvc.Add("Age", age);
byte[] responseArray = myWebClient.UploadValues(uri, nvc);
// Encoding.ASCII.GetString(responseArray)

1

1 9.

Module 9

Designing the User Interface for a Graphical Application

2 9.
Designing the User Interface for a Graphical Application

Contents

Topic Slide

Overview 3

XAML 4

What’s Special About WPF? 10

Layout 12

Templates 13

Routed Events 14

Styles 18

Diagnostics 19

Exam Topic: none

2

3 9.
Overview

What is Windows Presentation Foundation?

WPF is a framework to create Windows applications using

mark-up (XAML) and code-behind (.cs, .vb)

Advantages of XAML and WPF

• Powerful data binding and visualization, media support, 2D and 3D

vector graphics, animation, flow and fixed documents

• Used in Silverlight and Windows 8 Metro (XOML in Workflow)

• Microsoft is supporting but not extending Windows Forms

XAML designer in Visual Studio

• Better XAML IntelliSense, event handling and code writing

XAML designer in Expression Blend

• Better visual property, timeline and animation editing

4 9.
XAML

Evolution of the List Box

1990s: Visual Basic, C

• Contains: string (optionally also an integer)

Displays: string

Early 2000s: .NET 1.0+

• Contains: object

Displays: string (calls ToString method)

2006 and later: .NET 3.0+

• Contains: object

Displays: object

<ListBoxItem>
 <Image ... >
 <Hyperlink ... >
 <RichTextBox ... >
</ListBoxItem>

3

5 9.
XAML

What is Extensible Application Markup Language?

XAML is declarative code

• Easier for code generators and programmers to read and write

• Simply instantiates and controls .NET classes

XAML is an alternative to procedural language such as C#

and Visual Basic, but is not required

• For example, this XAML could be written using C#

Button b1 = new Button();
b1.Content = "OK";
b1.Background = new SolidColorBrush(Colors.LightBlue);
DockPanel.SetDock(b1, Dock.Top);

<Button Name="b1"
 DockPanel.Dock="Top"> OK
 <Button.Background>
 LightBlue
 </Button.Background>
</Button>

6 9.
XAML

Namespaces and Instantiating Objects

Default defined namespaces

Importing namespaces

Instantiating objects

<sys:Double>98.1</sys:Double>
<aw:Product Name="Bike" ListPrice="12.34" Color="Red" />

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:sys="clr-namespace:System:assembly=mscorlib"
xmlns:aw="clr-namespace:Wpf.Examples"

XAML Namespaces and Namespace Mapping for WPF XAML
http://msdn.microsoft.com/en-us/library/ms747086.aspx

4

7 9.
XAML

Setting Properties in Markup

Two ways of setting a property in XAML

• As an attribute or as child element

Setting default properties

Setting attached properties

• Objects can gain extra abilities by being children of a parent that

defines attached properties

<Button>
 <Button.Background>
 LightBlue
 </Button.Background>
 ...
</Button>

<Button Background="LightBlue">
 ...
</Button>

<Button Content="Click Me" /> <Button>Click Me</Button>

<Canvas>
 <Button Canvas.Top="20" Panel.ZIndex="1" />

8 9.
XAML

Setting Attached Properties in Code

In markup, use the class name that defines the attached

property

In code, use static methods on the class that defines the

attached property

Can also read attached properties

<Canvas>
 <Button Canvas.Top="20" Panel.ZIndex="1" ... />

Canvas.SetTop(Button1, 20);
Panel.SetZIndex(Button1, 1);

double top = Canvas.GetTop(Button1);
int zindex = Panel.GetZIndex(Button1);

5

9 9.
XAML

Naming Objects

x:Name or Name (but cannot use both)

• After x:Name is applied to a framework's backing programming

model, the name is equivalent to the variable that holds an object

reference or an instance as returned by a constructor

x:Key

• Used for items that are being added as values to a dictionary, most

often for styles and other resources that are being added to a

ResourceDictionary

• There is actually no corresponding property on the object or even an

attached dependency property being set, it is simply used by the

XAML processor to know what key to use when calling Dictionary.Add

x:Name Directive
http://msdn.microsoft.com/en-us/library/ms752290.aspx

10 9.
What’s Special About WPF?

Dependency Properties and Routed Events

CLR classes have simple properties and events

WPF has dependency properties and routed events

• Support data binding, styles, resources, animation, event tunnelling

and bubbling, and other special features

public string FirstName { get; set; }
public event EventHandler Clicked;

public static readonly DependencyProperty Height =
 DependencyProperty.Register("Height", typeof(int), ...
public static readonly RoutedEvent TapEvent =
EventManager.RegisterRoutedEvent("Tap",
RoutingStrategy.Bubble, ...);

Routed Events Overview
http://msdn.microsoft.com/en-us/library/ms742806.aspx

Dependency Properties Overview
http://msdn.microsoft.com/en-us/library/ms752914.aspx

6

11 9.
What’s Special About WPF?

Separation of Control Behaviour and Appearance

WPF separates the behaviour of a control from its

appearance

• Every control has a default appearance but this can be replaced

For example, a button is something that can be clicked to

trigger an action

• Although the default look may be a 3D silver-grey rectangle, a button

could look like anything, may be animated, and so on

• Control templates allow this

12 9.
Layout

Margins and Padding

Padding is similar to an “inner” Margin in most respects but

only used in some classes

• Block, Border, Control, TextBlock

Alignment, Margins, and Padding Overview
http://msdn.microsoft.com/en-us/library/ms751709.aspx

myBorder.Padding = new Thickness(15);

<Border Padding="15"

7

13 9.
Templates

Control, Item, and Content Templates

Template of a Control (instance of a ControlTemplate)

decides how a control looks, while the ContentTemplate

decides how the Content of the control looks

<Button Template={StaticResource A}
 ContentTemplate={StaticResource B} ...

<ListBox Template={StaticResource C}
 ItemTemplate={StaticResource D} ...

<Window.Resources>
 <ControlTemplate x:Key="A">
 <ContentPresenter /> ...

<DataTemplate x:Key="B">
 <ContentPresenter Content="{Binding}" />

<ControlTemplate x:Key="C">
 <ItemsPresenter /> ...

14 9.
Routed Events

Tunneling and Bubbling

How to tell the difference

• By convention, Preview is a prefix for naming events that are

registered to use tunnelling strategy

Three supported strategies

• Bubbling

• Tunnelling

• Direct

Understand Bubbling and Tunnelling in 5 minutes
http://www.wpfmentor.com/2008/11/understand-bubbling-and-tunnelling-in-5.html

8

15 9.
Routed Events

Inheritance Hierarchy

• UIElement.MouseDown, PreviewMouseDown, and so on

• Control.MouseDoubleClick, PreviewMouseDoubleClick

• ButtonBase.Click

16 9.
Routed Events

Difference between sender and e.Source

sender is the object that

handled the event

e.Source is the object that

triggered the event

RoutedEventArgs.Source Property – http://msdn.microsoft.com/en-
us/library/system.windows.routedeventargs.source.aspx

<StackPanel ButtonBase.Click="StackPanel1_Click"
PreviewMouseDown="StackPanel1_PreviewMouseDown" ...>

 <Button Content="A" Click="Button1_Click" ...>
 <Button Content="B" ...

Private Sub StackPanel1_Click(...)
 ListBox1.Items.Add("StackPanel1_Click, sender = " &
 CType(sender, FrameworkElement).Name & ", e.Source = " &
 CType(e.Source, FrameworkElement).Name)

9

17 9.
Routed Events

e.Handled

Set e.Handled to true to prevent routed events from

tunnelling and bubbling to other event handlers

• Setting e.Handled to true on a button’s Click handler would prevent a

parent panel from receiving the Click event…

• …unless the parent panel added its handler using code and passed

true for the handleEventToo parameter

Marking Routed Events as Handled, and Class Handling
http://msdn.microsoft.com/en-us/library/ms747183

AddHandler(Button1.KeyDown, StackPanel1_KeyDown, true);

18 9.
Styles

Defining

Style using key

• Control.Property

Style using TargetType

• Property

<Style x:Key="myStyle" TargetType="{x:Type Label}">
 <Setter Property="Background" Value="Blue" />

<Style x:Key="myStyle">
 <Setter Property="Control.Background" Value="Blue" />

10

19 9.
Diagnostics

Christian Moser’s WPF Inspector

WPF Inspector is a utility that attaches to a running WPF

application to troubleshoot common problems with

layouting, databinding or styling

• Explore a live view of the logical- and visual tree

• Read and edit property values of elements

• Watch the data context

• Debug triggers

• Trace styles

• and much more

WPF Inspector
http://wpfinspector.codeplex.com/

20 9.
Diagnostics

Enable Warning Level for Debugging Output

To see details of PresentationTraceSources

xmlns:diag:clr-namespace:System.Diagnostics;assembly=WindowsBase"

{Binding ..., diag:PresentationTraceSources.TraceLevel=High}

1

1 10.

Module 10

Improving Application Performance and Responsiveness

2 10.
Improving Application Performance and Responsiveness

Contents

Exam Topic: Implement multithreading and asynchronous

processing

Use the Task Parallel library (ParallelFor, Plinq, Tasks)

 Create continuation tasks

 Spawn threads by using ThreadPool

Unblock the UI

Use async and await keywords

Manage data by using concurrent collections

Topic Slide

Performance 3

Anonymous Delegates 4

Threading 5

Tasks 10

Synchronization 13

Exam Topic: Manage multithreading

 Synchronize resources

 Implement locking

 Cancel a long-running task

 Implement thread-safe methods to handle race conditions

Asynchronous Programming with Async and Await (C# and Visual Basic)
http://msdn.microsoft.com/library/vstudio/hh191443.aspx

2

3 10.
Overview

Planning for Application Performance

Define goals

• Goals help you to determine whether an application is performing

faster or slower

Understand your platform

• Always maintain the cycle of measuring, investigating,

refining/correcting during your application development cycle

Make performance tuning an iterative process

• You should know the relative cost of each feature you will use, for

example, reflection is expensive

Build towards graphical richness

• Always start with using the least performance intensive resources to

achieve your scenario goals; incrementally evolve a UI that adapts to

your performance requirements

4 10.
Delegates

Anonymous Methods

In versions of C# before 2.0, the only way to declare a

delegate was to use named methods, but C# 2.0 introduced

anonymous methods

With C# 3.0 and later, lambda expressions supersede

anonymous methods as the preferred way to write inline

code

Know both for the exam

button1.Click += delegate(System.Object o, System.EventArgs a)
 { MessageBox.Show("Click from " + (o as Button).Name); };

button1.Click += (o, a) =>
 { MessageBox.Show("Click from " + (o as Button).Name); };

Anonymous Methods (C# Programming Guide)
http://msdn.microsoft.com/en-us/library/0yw3tz5k(v=vs.110).aspx

3

5 10.
Threading

Manually Managing Threads

Main thread is foreground thread

• Keeps process alive

Background threads do not keep process alive

• ThreadPool threads are background threads

• Thread instance has IsBackground property

A thread can execute a method that conforms to either one

of two delegates

• ThreadStart: no parameter

• ParameterizedThreadStart: single object parameter

Call Start method

• Thread will complete automatically or call Abort

Threading (C# and Visual Basic)
http://msdn.microsoft.com/library/ms173178.aspx

6 10.
Threading

Asynchronous Processing Model (APM)

Allows code to run on a different thread so the calling

thread isn’t blocked

APM code pattern is used throughout .NET since 1.0

• Begin... and End... pair of methods e.g. streams have Read method,

but also BeginRead and EndRead

• Example using a callback delegate

strm.BeginRead(buffer, 0, buffer.Length,
 new AsyncCallback(CompleteRead), strm);
// do other work

void CompleteRead(IAsyncResult result) {
 FileStream strm = (FileStream)result.AsyncState;
 int numBytes = strm.EndRead(result);
}

4

7 10.
Threading

Delegate Asynchronous Support

Even types without built-in support for the Begin+End design

pattern can use it through delegates

Delegate methods

• BeginInvoke: creates a new thread to execute the method

• EndInvoke: returns result of method call

delegate int CalcDelegate(string s);

CalcDelegate del = new CalcDelegate(Calc);
IAsyncResult iar = del.BeginInvoke("Apples");
// do other work
if(iar.IsCompleted)
 answer = del.EndInvoke(iar);

public int Calc(string s) {
 // method we want to call asynchronously

8 10.
Threading

APM IAsyncResult interface

Members

• AsyncState: user defined state

• AsyncWaitHandle: WaitHandle to wait for

• CompletedSynchronously: how did it complete?

• IsCompleted: has it finished yet?

While waiting for the worker thread to complete, the main

thread can:

• Process one chunk of work and then “wait until done”

• Process multiple, small chunks of work while “polling”

• Get on with something else and

have a callback method called

5

9 10.
Threading

“Wait Until Done” versus “Polling”

“Wait Until Done” technique

“Polling” technique

FileStream strm = new FileStream("file.txt",
 FileMode.Open, FileAccess.Read, FileShare.Read,
 1024, FileOptions.Asynchronous);
IAsyncResult result = strm.BeginRead(
 buffer, 0, buffer.Length, null, null);
// do some work, then call EndRead to wait until done
int numBytes = strm.EndRead(result);

IAsyncResult result = strm.BeginRead(
 buffer, 0, buffer.Length, null, null);
while (!result.IsCompleted) {
 // do a small piece of work
}
int numBytes = strm.EndRead(result);

10 10.
Tasks

Creating and Starting Tasks

The Task class represents an asynchronous operation

Other constructors

• Task(Action, CancellationToken)

• Task(Action, TaskCreationOptions)

• Task(Action<Object>, Object): pass in state

• And other combinations

Task Class
http://msdn.microsoft.com/en-us/library/system.threading.tasks.task.aspx

var t1 = Task.Factory.StartNew(() => DoAction());

var t2 = new Task(() => DoAction());
t2.Start();

6

11 10.
Tasks

Common Members

Member Description

AsyncState Gets the state object supplied when the Task was

created, or null if none was supplied

IsCanceled, IsCompleted,

IsFaulted

Gets whether this Task instance has completed

execution due to being canceled, or otherwise

ContinueWith(Action<Task>),

ContinueWith(Action<Task>,

CancellationToken), …

Creates a continuation that executes asynchronously

when the target Task completes

Delay(Int32), … Creates a task that will complete after a delay

Run(Action), Run(Func<Task>),

…

Queues the specified work to run on the ThreadPool

and returns a task handle for that work

Start(), … Starts the Task, scheduling it to the TaskScheduler

Wait(), … Waits for the Task to complete execution

WaitAll(Task[]), …

WaitAny(Task[]), …

Waits for all (or any) of the provided Task objects to

complete execution

12 10.
Tasks

Nested and Child Tasks

When code in a task creates a new task and does not specify

the AttachedToParent option, the new task is not

synchronized with the outer task in any special way

• Such tasks are called a detached nested task

• The outer task does not wait for the nested task to finish if you call

Wait method

When code in a task creates a new task and DOES specify

the AttachedToParent option, the new task is known as a

child task of the originating task, which is known as the

parent task

• The outer task DOES wait for the nested task to finish if you call Wait

method

Task Parallelism (Task Parallel Library)
http://msdn.microsoft.com/en-us/library/dd537609.aspx

7

13 10.
Synchronization

Thread Access to Shared Resources

Multiple threads might access resources simultaneously

Several types for making your code “thread safe”

• Monitor: exclusive lock for reference

types; value types are boxed so will

NOT be locked.

Can also use TryEnter()

which uses a timeout to

avoid deadlocks

• ReaderWriterLock: flag to allow read/write style synchronization;

does NOT lock the resource

• Interlocked: exclusive lock for Int32 and Int64

When synchronizing access to collections, lock the

ICollection.SyncRoot property for greater efficiency

• …and then check ICollection.IsSynchronized

lock(this) {
 // ...
}

Monitor.Enter(this);
try {
 // ...
} finally {
 Monitor.Exit(this);
}

14 10.
Synchronization

Collections

Most .NET collections have an IsSynchronized property that

returns false by default

To create a synchronized collection use the Synchronized

static method

ht1 and ht2 point to same data structure

Hashtable ht1 = new Hashtable();
Hashtable ht2 = Hashtable.Synchronized(ht1);
Console.WriteLine("ht1: {0}", ht1.IsSynchronized);
Console.WriteLine("ht2: {0}", ht2.IsSynchronized);
lock(ht2.SyncRoot)
{
 // enumerate collection
}

ht1: False
ht2: True

8

15 10.
Synchronization

How to Make a Class Thread-Safe

Most of the code in the base class libraries is NOT thread

safe

• Thread safe means that a type can be safely shared between threads

• A race condition occurs when a thread pre-empts an operation being

performed by another thread causing an error

The easiest way to make a class thread safe is to lock the

whole instance with lock, Monitor.Enter(), or

Monitor.TryEnter() methods whenever you are executing

code that should not be pre-empted

16 10.
Synchronization

ReaderWriterLock Class

Does not actually lock anything

• It is a flag that your code should check before accessing the shared

resource

Can be used to implement common locking pattern

• Multiple readers can access data at the same time

• Only one writer at a time (when no readers have locks)

Readers and writers are queued separately

• Alternates between a collection of readers, and one writer

ReaderWriterLockSlim is an improved version

9

17 10.
Synchronization

ReaderWriterLock Useful Members

Properties

• IsReaderLockHeld, IsWriterLockHeld

Methods

• AcquireReaderLock, AcquireWriterLock

• UpgradeToWriterLock, DowngradeFromWriterLock

• ReleaseReaderLock, ReleaseWriterLock

To avoid deadlocks, the Acquire... methods must supply

timeout as milliseconds or TimeSpan

• -1 milliseconds: infinite, 0: get lock immediately or not at all

Throws exception after timeout expires

18 10.
Synchronization

Interlocked

Interlocked class works with value types

• Read(x): safely returns Int64 on 32-bit OS

• Add(x, y): safely adds y to x (either Int32 or Int64)

• Increment(x), Decrement(x): works with Int32 and Int64

• Exchange(x, y): floats, doubles, Int32 and Int64

Interlocked.Increment(ref i); // safe
Console.WriteLine(Interlocked.Read(ref i)); // safe

long i;
i++; // unsafe incrementing of 64-bit number
Console.WriteLine(i); // even reading is unsafe!

10

19 10.
Synchronization

Windows OS Resources

These are flags (“traffic lights”), not locks

• Mutex (33x slower than Monitor): synchronization across app domain

and process boundaries

• Semaphore: throttle access to a resource to a set number of threads

• Event: notify multiple threads that an event has occurred

• AutoResetEvent and ManualResetEvent classes

• All classes inherit from WaitHandle class: Handle property, Close,

WaitOne methods

Mutex m = new Mutex();
if (m.WaitOne(1000, false)) // wait 1 second for lock
{
 try { // Some Work }
 finally { m.ReleaseMutex(); }
}

20 10.

Further Study

Joseph Albahari’s free e-book about

threading

• Available online as HTML or downloadable

PDF

• http://www.albahari.com/threading/

C# 5.0 in a Nutshell:

The Definitive Reference

• By Joseph Albahari and Ben Albahari

• An excellent additional book because it

covers all the topics in the 70-483 exam in

depth

1

1 11.

Module 11

Integrating with Unmanaged Code

2 11.
Integrating with Unmanaged Code

Contents

Topic Slide

Memory Management 3

Dynamic Types 6

COM Interop 9

P/Invoke Interop 13

Exam Topic: Consume types

Handle dynamic types

 Ensure interoperability with unmanaged code, for

example, dynamic keyword

Exam Topic: Manage the object life cycle

Manage unmanaged resources

 Implement IDisposable, including interaction with

finalization

Manage IDisposable by using the using statement

Manage finalization and garbage collection

2

3 11.
Memory Management

What Are Reference Types?

A reference type is a pointer to an object on the heap

Assignment copies the memory address on the stack

• System.String overrides this behaviour to act like a value type but

your types should implement the ICloneable interface (provide a

Clone method) instead

Requires garbage collection to remove

•GC does this automatically when needed

If your type uses unmanaged resources

• Finalizer is required: ~typename

• Implement IDisposable is recommended: Dispose()

4 11.
Memory Management

What Is the using Statement?

What does it do?

using (SqlConnection con = new SqlConnection())
{
 // other code
}

SqlConnection con = new SqlConnection();
try
{
 // other code
}
finally
{
 con.Dispose();
}

3

5 11.
Memory Management

GC class

Controls the system garbage collector, a service that

automatically reclaims unused memory

Method Description

Collect Forces immediate garbage collection of all generations

KeepAlive References the specified object, which makes it ineligible for

garbage collection from the start of the current routine to the point

where this method is called

ReRegisterForFinalize Requests that the system call the finalizer for the specified object

for which SuppressFinalize has previously been called

SuppressFinalize Requests that the system not call the finalizer for the specified

object

WaitForFullGCApproach Returns the status of a registered notification for determining

whether a full, blocking garbage collection by the common language

runtime is imminent

WaitForFullGCComplete Returns the status of a registered notification for determining

whether a full, blocking garbage collection by the common language

runtime has completed

6 11.
Dynamic Types

Example

Method chosen at compile-time

Methods chosen at run-time

public static class Math
{
 public static decimal Abs(decimal value);
 public static double Abs(double value);
 public static float Abs(float value);
 public static int Abs(int value);
 ...

double x = 1.75;
double y = Math.Abs(x);

dynamic x = 1.75;
dynamic y = Math.Abs(x); // double

dynamic x = 2;
dynamic y = Math.Abs(x); // int

4

7 11.
Dynamic Types

Comparing static and dynamic typing

Static

Late-binding using reflection

Statically typed to be dynamic

Calculator calc = GetCalculator();
double d = calc.Add(2.3, 4.5);

object calc = GetCalculator();
Type calcType = calc.GetType();
double d = (double)calcType.InvokeMember("Add",
 BindingFlags.InvokeMethod, null,
 new object[] { 2.3, 4.5 });

dynamic calc = GetCalculator();
double d = calc.Add(2.3, 4.5);

8 11.
Dynamic Types

COM Interop

C# 3.0

C# 4.0 and later

object fileName = "Test.docx";
object missing = System.Reflection.Missing.Value;

doc.SaveAs(ref fileName,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing,
 ref missing, ref missing, ref missing);

doc.SaveAs("Test.docx");

5

9 11.
COM Interop

COM Background

COM-compliant components must have an IUnknown

interface (AddRef, QueryInterface, Release)

•Also usually IDispatch for late binding

Uses type libraries for meta-data (.tlb, .olb)

Must be registered with OS

• regsvr32.exe

•Component (for use at runtime) and type library (for referencing at

compile time)

•Classes and members are identified in registry with GUIDs which

should not change between versions

10 11.
COM Interop

Using COM Components

Can add a reference in Visual Studio

Type Library Importer (tlbimp.exe)

•Generates an assembly (RCW) from a type library; can then be

referenced in a project

•Use /keyfile: or /keycontainer: to apply a strong name to the

resulting assembly

Can also use TypeLibConverter class

tlbimp MyCOM.tlb

tlbimp MyCOM.tlb /out:MyRCW.dll

csc /r:MyRCW.dll MyApp.cs

6

11 11.
COM Interop

Primary Interop Assemblies

Unique, vendor-supplied assembly

•Always use a PIA if available because types have been pre-imported

(and optimized)

• If you import a COM component yourself, you create a set of unique

types that are incompatible with those imported by another

developer

12 11.
COM Interop

Marshal.ReleaseComObject

Frees the COM object that holds references to resources or

when objects must be freed in a specific order

•Returns the number of remaining references

•Could construct a loop from which you call this method until the

returned reference count reaches zero

7

13 11.
P/Invoke Interop

How to Call Unmanaged DLLs Using DllImport

P/Invoke calls unmanaged APIs like system DLLs

•Declare with the DLLImport attribute from

System.Runtime.InteropServices

•Call method as normal .NET method

[DllImport("user32.dll")]
static extern IntPtr GetForegroundWindow();

14 11.
P/Invoke Interop

DllImport

CharSet

•Controls how string parameters are marshalled; default is

CharSet.Ansi

EntryPoint

•Name of function in DLL; only required if you want to use a different

name in your code

ExactSpelling

• False allows a lookup for multiple possible matches, e.g.

GetWindowsPosA or GetWindowsPosW; adds overhead

SetLastError

• If true, can get last error, but adds overhead

8

15 11.
P/Invoke Interop

Windows Data Types and Structures

Many P/Invoke calls are to the Windows API

• So knowing the common Windows data types is useful

WORD and DWORD

• 16-bit and 32-bit unsigned integers

Common Data Types

•http://msdn.microsoft.com/en-us/library/cc230309(PROT.10).aspx

Common Data Structures

•http://msdn.microsoft.com/en-us/library/cc230308(PROT.10).aspx

16 11.

Further Study

.NET 2.0 Interoperability Recipes

•Bruce Bukovics

• 632 pages

.NET and COM: The Complete Interoperability Guide

•Adam Nathan

• 1579 pages

http://www.amazon.com/gp/reader/067232170X/ref=sib_dp_pt

1

1 12.

Module 12

Creating Reusable Types and Assemblies

2 12.
Creating Reusable Types and Assemblies

Contents

Exam Topic: Find, execute, and create types at runtime

by using reflection

 Create and apply attributes

 Read attributes

Generate code at runtime by using CodeDom and lambda

expressions

Use types from the System.Reflection namespace

(Assembly, PropertyInfo, MethodInfo, Type)

Topic Slide

Attributes 3

Application Domains 5

Windows Services 6

Configuration 7

Reflection 13

Assemblies 19

WinMD Assemblies 20

Exam Topic: Manage assemblies

 Version assemblies

 Sign assemblies using strong names

 Implement side-by-side hosting

 Put an assembly in the global assembly cache

 Create a WinMD assembly

2

3 12.
Attributes

What Are They?

Meta-data that applies information and functionality to

assemblies, types, members

Inherit from System.Attribute or derived class

• Convention is to use …Attribute as suffix, compiler can append

suffix automatically when applying attributes

[assembly: AssemblyTitle("...")]
[Serializable] [TypeForwardedTo(...)]
Public Class Person
 [FileIOPermission(...)] Public Sub ReadFile()
 ...

4 12.
Attributes

Common Assembly Attributes

AssemblyCompany – publishing company name

AssemblyConfiguration – DEBUG or RELEASE

AssemblyCopyright – copyright message

AssemblyCulture – culture for satellite assembly

AssemblyDescription – a simple description

AssemblyKeyFile + AssemblyDelaySign – for signing your

assembly with a strong name key

AssemblyVersion – version number of assembly

*GetCustomAttributes reads these values using reflection

3

5 12.
Application Domains

What Are They?

An application domain is a logical container that allows

multiple assemblies to run within a single process

• Prevents direct access to other assemblies’ memory

• More efficient than separate processes

• Can have different evidence and hence permissions

Operating system

Process

.NET Framework runtime

Application domain

Assembly Assembly

Application domain

Assembly

6 12.
Windows Services

What Are They?

What is a Windows Service?

• A long-running process that provides services to

other applications, e.g. SQL Server, Exchange

Server, Windows Event Log

Differences to normal .NET processes:

• Can start as soon as operating system starts

• Must install before running

• Cannot debug using F5, must start manually and

attach

• Main method issues Run command

• User interface interaction is restricted

• Runs within a security context

4

7 12.
Configuration

Configuring .NET Applications

.config files are XML and are processed when starting any

.NET application

• Machine.config

• My.exe.config or Web.config(s)

Machine.config is in

%Windir%\Microsoft.NET\Framework\v4.0.30319\Config

Settings can be overridden by subsequent .config files

• If allowDefinition is MachineOnly they cannot be overridden

• If allowDefinition is MachineToApplication they can be

8 12.
Configuration

Configuration File Example

<?xml version="1.0" encoding="utf-8"?>
<configuration>

 <appSettings>
 <add key="Foo" value="Hello World!"/>
 </appSettings>

 <connectionStrings>
 <clear/> <!-- clear any defined in Machine.config -->
 <add name="AdventureWorks"
 providerName="System.Data.SqlClient"
 connectionString="..."/>
 </connectionStrings>

</configuration>

5

9 12.
Configuration

Using the System.Configuration Namespace

Reference the System.Configuration assembly

ConfigurationManager class merges all .config files into

read-only collections

• AppSettings: read from the merged <appSettings>

• ConnectionStrings: read from the merged <connectionStrings>

• GetSection: read from any merged section by specifying the path,

e.g. "system.web/compilation"

It can also open specific .config files to enable writing

• OpenExeConfiguration

• OpenMachineConfiguration

• OpenMappedExeConfiguration

10 12.
Configuration

External Configuration Sources

A configuration section can load settings from an external

file

Why?

• More logical and modular structure

• File-access security and permissions can be used to restrict access to

sections of configuration settings

• Settings that are not used during application initialization (e.g.

connection strings) can be modified and reloaded without requiring

an application restart

If any settings require the application to restart

<pages configSource="pages.config" />

<section name="pages" ...
 restartOnExternalChanges="true" />

6

11 12.
Configuration

Reading from Configuration Files

How to read from <connectionStrings>

• ConnectionString Settings object has a property named

ConnectionString that contains the text

The .config is read when first loading an assembly

• To force a refresh, call RefreshSection method

ConnectionStringSettings css =
 ConfigurationManager.ConnectionStrings["AdventureWorks"];
SqlConnection cn = new SqlConnection(css.ConnectionString);

ConfigurationManager.RefreshSection("appSettings");
label1.Text = ConfigurationManager.AppSettings["colour"];

12 12.
Configuration

Protecting Configuration Files

How to protect <connectionStrings> programmatically

Two providers

• RsaProtectedConfigurationProvider

• DataProtectionConfigurationProvider

To use the same encrypted configuration file on multiple

servers, such as a Web farm, only the

RsaProtectedConfigurationProvider enables you to export

the keys and import them on another server

ConnectionStringsSection s = config.GetSection(
 "connectionStrings") as ConnectionStringsSection;
s.SectionInformation.ProtectSection(
 "RsaProtectedConfigurationProvider");

7

13 12.
Reflection

What Is Reflection?

If you reference an assembly at compile time, you have

direct access to it’s types

If you don’t, reflection allows you to

• Load an assembly at runtime

• Dynamically read information about all the types

• Dynamically create an instance of a type and use it’s members

• Dynamically generate new types and assemblies and save them

14 12.
Reflection

How to Load Assemblies

Assembly static methods

• Load(name): usually load from GAC

• LoadFile(file): load by filename

• LoadFrom(path): load by path and filename

• ReflectionOnlyLoad(name): like Load but read-only

• ReflectionOnlyLoadFrom(path): like LoadFrom but read-only

• A .NET 4.5 compiled assembly can call code in an older version

assembly but the older assembly will be loaded into the .NET 4.5

assembly’s process and executed by the CLR 4.0

Assembly a = Assembly.LoadFile("...");
Type t = a.GetType("System.Collections.Hashtable");
ConstructorInfo c = t.GetConstructor(Type.EmptyTypes);
object ht = c.Invoke(new object[] {});
MethodInfo m = t.GetMethod("Add");
m.Invoke(ht, new object[] { 1, "Hello" });

8

15 12.
Reflection

MethodBody

MethodInfo.GetMethodBase returns MethodBody

• GetILAsByteArray

• LocalVariables

• ExceptionHandlingClauses

ildasm.exe

• Uses reflection to display IL code for any assembly

Redgate Reflector

• Uses reflection to reverse-engineer assemblies to multiple languages

16 12.
Reflection

BindingFlags enumeration

Constant Description

DeclaredOnly Ignore inherited members

FlattenHierarchy Include declared, inherited, and protected members

Instance / Static Include instance or static members

Public include public members

NonPublic Include protected and internal

foreach (PropertyInfo prop in t.GetProperties())
 Console.WriteLine("{0}", prop.Name);
BindingFlags flags = BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.Instance;
foreach (MemberInfo member in t.GetMembers(flags))
 Console.WriteLine("{0}: {1}",
 member.MemberType, member.Name);

9

17 12.
Reflection

Getting Type Information

Type instance properties

• Name, Namespace, FullName

• IsValueType, IsClass

• IsPublic

• IsAbstract

• IsSealed

• IsFamily (protected)

• IsAssembly (internal / Friend)

• IsFamilyOrAssembly (protected internal / Protected Friend)

• And many more...

18 12.
Reflection

Generating Types Dynamically

System.Reflection.Emit namespace includes types to create

dynamic assemblies

• AssemblyBuilder

• ModuleBuilder

• TypeBuilder

• ConstructorBuilder

• MethodBuilder

• PropertyBuilder

• FieldBuilder

• EventBuilder

• ParameterBuilder

• ILGenerator

• EnumBuilder

10

19 12.
Assemblies

Command Line Executable Tools

EXE Description

gacutil The Global Assembly Cache tool allows you to view and manipulate the

contents of the global assembly cache* and download cache

regsvr32 Registers .dll files as command components in the registry

sn The Strong Name tool helps sign assemblies with strong names; it provides

options for key management, signature generation, and signature

verification

regasm The Assembly Registration tool reads the metadata within an assembly and

adds the necessary entries to the registry, which allows COM clients to

create .NET Framework classes transparently

csc You can invoke the C# compiler by typing the name of its executable file

(csc.exe) at a command prompt

al The Assembly Linker generates a file that has an assembly manifest from one

or more files that are either modules or resource files

* Windows Installer (MSI) can also be used to install assemblies into

the GAC (amongst many other tasks).

20 12.
WinMD Assemblies

How to Create

You can use managed code to create your own Windows

Runtime types, packaged in a Windows Runtime component

• Use your component in Windows Store apps with C++, JavaScript,

Visual Basic, or C#

• Support is designed to be transparent to the .NET Framework

programmer, however, when you create a component to use with

JavaScript or C++, you need to be aware of differences in the way

those languages support the Windows Runtime

Creating Windows Runtime Components in C# and Visual Basic
http://msdn.microsoft.com/en-us/library/windows/apps/br230301.aspx

Programming in C#: (06) Splitting Assemblies, WinMD, Diagnostics and Instrumentation
http://channel9.msdn.com/Series/Programming-in-C-Jump-Start/Programming-in-C-06-Splitting-Assemblies-WinMD-Diagnostics-and-Instrumentation

1

1 13.

Module 13

Encrypting and Decrypting Data

2 13.
Encrypting and Decrypting Data

Contents

Topic Slide

Protecting Data 3

Security 14

Exam Topic: Perform symmetric and asymmetric encryption

 Choose an appropriate encryption algorithm

Manage and create certificates

 Implement key management

 Implement the System.Security namespace

Hashing data

 Encrypt streams

Encrypting and Decrypting Data
http://msdn.microsoft.com/library/e970bs09.aspx

2

3 13.
Protecting Data

Three Techniques

Encrypt

•Two-way operation (i.e. can be decrypted)

•Best choice for data such as credit card numbers

Hash (integrity check)

•One-way operation (i.e. cannot create original data from hash)

•A checksum that is unique to a piece of data to ensure no

modification occurs

•Best choice for data such as passwords

Sign (authentication check)

•A digital signature is a value that is appended to electronic data to

prove it was created by someone who possesses a specific private

key; the public key is used to verify the signature at the receiver's

end

4 13.
Protecting Data

Three Types of Algorithm

Non-Keyed

• Simple to code but weak

Symmetric Key (aka secret or shared key)

• Same key on both sides

Asymmetric Keys

•Public-private key pair

•Mathematically linked but cannot derive one from the other

3

5 13.
Protecting Data

Symmetric Encryption

Good

• Fast, large amounts of data

Bad

•Need a way to share the key

OS-Implemented Algorithms (unmanaged code)

•DES (common but should be avoided)

•TripleDES

•RC2 (official replacement for DES)

Managed Algorithms (supports partially-trusted code)

•RijndahlManaged, AesManaged

•Advanced Encryption Standard (AES) is Rijndael with fixed block size

and iteration count: best choice

6 13.
Protecting Data

SymmetricAlgorithm Base Class

All symmetric algorithm implementations derive from

System.Security.Cryptography.SymmetricAlgorithm

Important properties

•Mode: defaults to CipherMode.CBC (Cipher Block Chaining)

• LegalKeySizes and LegalBlockSize: array of KeySize; has MaxSize and

MinSize and SkipSize

•KeySize: by default is the largest legal size of key

•BlockSize: number if bits processed at one time

•Key: the secret key as a byte array, generated automatically by

default, but should be stored or set explicitly

• IV: initialization vector; like the Key, it is a byte array and must be

shared with the decryptor

•Padding: how to fill remaining bytes in last block

4

7 13.
Protecting Data

SymmetricAlgorithm Base Class

Important methods

•CreateEncryptor: creates the object that needs to be passed to a

CryptoStream

•CreateDecryptor: creates the object that needs to be passed to a

CryptoStream

•GenerateIV: generates random IV

•GenerateKey: generates random key

•ValidKeySize: returns true for a valid key size

8 13.
Protecting Data

How to Establish a Symmetric Key

Two main ways

•Use default random key or call GenerateKey method and store

resulting key

•Generate from a password using Rfc2898DeriveBytes or

PasswordDeriveBytes classes

• Also needs a salt value, an IV, and the number of iterations used to

generate the key but they have defaults

// In practice, the user would provide the password
var password = "P@55w0r]>";
var myAlg = new RijndaelManaged();
byte[] salt = Encoding.ASCII.GetBytes("my salt");
var key As New Rfc2898DeriveBytes(password, salt);
myAlg.Key = key.GetBytes(myAlg.KeySize / 8);
myAlg.IV = key.GetBytes(myAlg.BlockSize / 8);

5

9 13.
Protecting Data

Asymmetric Encryption

Good

•More secure than symmetric encryption

Bad

• Slow, small amounts of data

Algorithm

•RSACryptoServiceProvider: encrypt (and also sign!)

•Name comes from initials of three men who invented it

How it works

• Sender uses receiver's public key to encrypt data

•Receiver uses their private key to decrypt

•Often combined with symmetric for best of both worlds, for example,

HTTPS/SSL

10 13.
Protecting Data

How to Encrypt and Decrypt Messages

Call Encrypt or Decrypt; for both passes

•Array of bytes containing data to encrypt or decrypt

•Boolean flag determines if Optimal Asymmetric Encryption Padding

should be used (Windows XP and later only)

•Unlike symmetric, does not use streams, uses byte arrays

var messageString = "Hello, World!";
var myRsa = new RSACryptoServiceProvider();
var messageBytes = Encoding.Unicode.GetBytes(messageString);
var encryptedMessage = myRsa.Encrypt(messageBytes, false);

var decryptedBytes = myRsa.Decrypt(encryptedMessage, false);
Console.WriteLine(Encoding.Unicode.GetString(decryptedBytes));

6

11 13.
Protecting Data

Hash and Sign

Non-Keyed Hash Algorithms

• Secure Hash Algorithm (SHA) with different hash sizes

• SHA1 (160 bit), SHA256, SHA384, SHA512

•MD5: Message Digest 5 (128 bit hash)

Symmetric Keyed Hash Algorithms

•HMACSHA1: Hash-based Message Authentication Code (HMAC)

•MACTripleDES: 8, 16, 24 byte keys; 8 byte hash size (64 bit)

Asymmetric Keyed Hash and Sign Algorithm

•Digital Signature Algorithm (DSA)

• DSACryptoServiceProvider: hash and sign data

• DSA cannot encrypt!

Do not confuse with RSACryptoServiceProvider

12 13.
Protecting Data

Random Number Generators and Salts

RNGCryptoServiceProvider class

•The class can be used to generate a random number for use various

types of cryptography and other operations

Example

•To store user passwords in the database in a way that they cannot be

extracted, the passwords need to be hashed using a one-way hashing

algorithm such as SHA1

•To do so, use the RNGCryptoServiceProvider to create a random salt,

append the salt to the password, hash it using SHA1

CryptoServiceProvider class, and store the resulting string in the

database along with the salt

•The benefit provided by using a salted password is making a lookup

table assisted dictionary attack against the stored values impractical,

provided the salt is large enough

7

13 13.
Protecting Data

How to Compute a Nonkeyed or Keyed Hash

A console application that accepts filename argument and

computes hash and displays it

A console application that accepts a password and filename

argument and computes hash and displays it

var hash = new MD5CryptoServiceProvider();
var file = new FileStream(args[0], FileMode.Open, FileAccess.Read);
var reader = new BinaryReader(file);
hash.ComputeHash(reader.ReadBytes((int)file.Length));
Console.WriteLine(Convert.ToBase64String(hash.Hash));

var saltBytes = Encoding.ASCII.GetBytes("This is my salt");
var passwordKey = new Rfc2898DeriveBytes(args[0], saltBytes);
var secretKey = passwordKey.GetBytes(16);
var hash = new HMACSHA1(secretKey);
// same as nonkeyed from here

14 13.
Security

Authenticating and Authorizing Users

Authentication

•Who is the user?

Authorization

•What are they allowed to do? Usually based on role membership

Types in System.Security.Principal

• IIdentity: authentication of a user

• IPrincipal: authorization of a user

•WindowsIdentity: Windows user account

•WindowsPrincipal: Windows group membership

•GenericIdentity: application-specific user

•GenericPrincipal: application-specific group or role membership

8

15 13.
Security

WindowsIdentity Class

Getting a WindowsIdentity

•GetCurrent: returns the current user account for the process

• Impersonate: allows changing of the identity of the process

• Returns a WindowsImpersonationContext instance; call Undo after

performing actions as the new user to revert

WindowsIdentity properties

•AuthenticationType

• IsAnonymous, IsAuthenticated, IsGuest, IsSystem

•Name, Token

•User: SID or SecurityIdentifier

•Groups: array of IdentityReference

•Use Translate(typeof(NTAccount)).Value to convert to an object

with a string for the group names

16 13.
Security

WindowsPrincipal Class

Creating a WindowsPrincipal

•Constructor takes WindowsIdentity object

•AppDomain.CurrentDomain.SetPrincipalPolicy links principal to

Thread.CurrentPrincipal property

WindowsPrincipal.IsInRole checks roles

•WindowsBuiltInRole enum for built in groups

• String value for custom groups ("domain\VS Developers")

Can be extracted from current thread

•But your must first set principal policy (VB does this automatically)

AppDomain.CurrentDomain.SetPrincipalPolicy(
 PrincipalPolicy.WindowsPrincipal);

9

17 13.
Security

PrincipalPermission class and attribute

Check the user account declaratively

Or imperatively

Parameters: Authenticated, Name, Role

• Works with fully-trusted assemblies too

[PrincipalPermission(SecurityAction.Demand,
 Role=@"BUILTIN\Administrators")]
void AdministratorsOnlyMethod()
{

void AdministratorsOnlyMethod()
{
 PrincipalPermission p = new PrincipalPermission(
 null, @"BUILTIN\Administrators", true);
 p.Demand(); // throws SecurityException

18 13.
Security

Further Study

Programming .NET Security

•Adam Freeman & Allen Jones

•Out of print

http://www.amazon.co.uk/gp/reader/0596004427/ref=sib_dp_pt

	70-483 Cover Page
	20483B.01.Review.Syntax
	20483B.02.Methods.Exceptions.Monitoring
	20483B.03.Value.Types.Collections.Events
	20483B.04.Classes.Interfaces.Type-Safety
	20483B.05.Inheritance
	20483B.06.Files.Streams
	20483B.07.Accessing.Data
	20483B.08.Remote.Data
	20483B.09.WPF
	20483B.10.Async.Threading
	20483B.11.Unmanaged.Code
	20483B.12.Assemblies.Reflection
	20483B.13.Encryption

